Pale purplish-red, quickly degenerating when removed from the water and becoming distinctly orange; fronds bushy, with a cylindrical axis to1 mm wide and 200 mm long. Both phases readily reproduce vegetatively. Photographs by M.D. Guiry
Seaweeds or macroalgae are attractive candidates for carbon capture, while also supplying a sustainable photosynthetic bioenergy feedstock, thanks to their cultivation potential in offshore marine farms. Seaweed cultivation requires minimal external nutrient requirements and allows for year-round production of biomass. Despite this potential, there remain significant challenges associated with realizing large-scale, sustainable agronomics, as well as in the development of an efficient biomass deconstruction and conversion platform to fuels and products. Recent biotechnology progress in the identification of enzymatic de- construction pathways, tailored to complex polymers in seaweeds, opens up op- portunities for more complete utilization of seaweed biomass components. Effective, scalable, and economically viable conversion processes tailored to seaweed are discussed and gaps are identified for yield and efficiency improvements.