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A B S T R A C T   

Marine macroalgae or seaweeds are the major components of the marine flora and are used as food, feed and 
fertilizer. Applications of seaweed extracts (SEs) from certain algae have the potential to improve plant growth 
and yield. The richness of polysaccharides, oligosaccharides, peptides, proteins and phytohormones in various 
SEs, favor the deployment of SEs as bio-elicitors for disease tolerance in plants. The SEs from some algae regulate 
the physiological, biochemical and molecular mechanisms of the plants to enhance defence against pathogens. 
The SEs also modulate the rhizosphere microbial composition, which contributes to regulation of plant defence 
responses. The regulation of salicylic acid (SA) and jasmonic acid (JA)-signaling pathways, reactive oxygen 
species (ROS) homeostasis and defence-related genes/enzymes by applications of SEs play a major role in the 
molecular regulation of defence response. This review focuses on the bioactive molecules of various SEs, func-
tional mechanism of bio-elicitors, phytohormones, and molecular regulation towards disease tolerance in plants.   

1. Introduction 

Seaweeds or marine macroalgae are commonly classified in to three 
major groups on the basis of their brown, red and green pigmentations 
as: the Phaeophyta, Rhodophyta and Chlorophyta, respectively. These 
macroalgae are photosynthetically active, serve as food resource for 
other organisms, possess different mechanisms for carbon acquisition, 
and important for maintaining the environment quality [1]. Various 
seaweeds are important sources for human food in many Asian countries 
such as China, Japan and Korea [2,3], fertilizers and fuels [4]. The 
importance of various seaweed extracts (SEs) for their utilization in 
agriculture has been reviewed [5–7]. Plants being sessile, are simulta-
neously exposed to different environmental challenges, including both 
abiotic and biotic factors, some of these factors either additively or 
individually limit their growth and productivity [8]. Plants require 
complex co-ordination of cellular, developmental and physiological 
processes in response to adverse environmental conditions. The cellular 

responses form a complex co-ordination of various signal transduction 
pathways in order to orchestrate the biochemical and molecular pro-
cesses required to combat various stresses and adaptation of plants 
throughout their lifecycle. The abiotic stresses like salinity, drought, 
cold and heat result in metabolic modulation, membrane disorganiza-
tion, closure of stomata, decreased photosynthetic activity, imbalance of 
reactive oxygen species (ROS) homeostasis and disturbances in nutrient 
uptake [9]. 

Seaweeds contain different compounds such as proteins, peptides, 
amino acids, soluble and insoluble fibers, lipids, pigments, phenols and 
various polysaccharides. Seaweeds are rich in different growth hor-
mones such as auxins, cytokinins and gibberellins and certain SEs are 
reported as effective bio-stimulants, which can increase the yield of 
different crops [6,10,11]. Kauffman et al. defined bio-stimulants as 
materials, promoting plant growth in low quantities and are not consider 
in fertilizers category [12]. Furthermore, bio-stimulants were classified 
in to three groups based on their source and content, as the humic 
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substances (HS), the hormone containing products (HCP), and amino 
acid containing products (AACP). The bio-stimulants support agricul-
ture by providing at least one of the following functions; enhance 
nutrition, impart abiotic stress tolerance and/or improve crop quality 
traits. Bio-stimulants also regulate plant defence against different 
pathogens, however, from the regulatory point of view the regulators 
and stakeholders have kept the bio-stimulation and biocontrol separate 
[12]. Bio-stimulants produced from various seaweeds help in main-
taining good soil health and increase the beneficial microflora [13]. By 
2016 the SEs represented 33% (483 million euro) of the total bio- 
stimulant market and now SEs are estimated to have a value of 894 
million Euro by 2022 with extracts from brown seaweeds forming a 
major group [14]. A number of commercial SEs are available for the 
improvement of growth and yield of agricultural and horticultural crops 
[5]. The SEs are reported to improve resistance by predominantly 
regulating the plant antioxidant pathways in response to different 
abiotic stresses such as salinity, water deficient and freezing [15–18]. 

Apart from abiotic stresses, certain biotic agents such as fungi, bac-
teria and viruses reduce both growth and yield of the plants. Different 
plants have various defence mechanisms to combat the biotic stresses in 
response to pathogenic attacks. The plant's innate immune system of has 
a multi-faceted defence system consisting of pathogen triggered immu-
nity (PTI) and effector-triggered immunity (ETI) against biotrophic, 
necrotrophic and hemibiotrophic fungal and bacterial pathogens [19]. 
The PTI and ETI activate local immune responses by activating the 
systemic acquired resistance (SAR) [20], or induced systemic resistance 
(ISR). The defence response involve participation of a complex network 
of signaling molecules such as salicylic acid (SA), jasmonic acid (JA) and 
ethylene (ET) [21]. Pathogenic fungi causes several diseases in plants 
such as leaf-spot, rust, wilt, blight, coils, scab, gall, canker, damping-off, 
root rot, mildew, and die-back. Fungi are responsible for 80% plant 
diseases, causing major yield loss [22,23]. More than 200 plant patho-
genic bacterial species exist in nature [24], and some of them are very 
harmful, e.g. Pseudomonas, Ralstonia, Agrobacterium, Xanthomonas, 
Erwinia, Xylella, Pectobacterium, and Dickeya [25,26]. Plant viruses can 
be very destructive and cause huge yield damage and sometimes may 
lead to 100% loss. Approximately, 30 types of viroids have been re-
ported to infect a large number of plants [27]. These biotic stresses are 
generally controlled by the applications of pesticides, fungicides and 
anti-microbial chemicals, which eventually enter in the human food 

chain leading severe toxicity. According to FAO [28], the major pesti-
cide groups (i.e. insecticides, herbicides, fungicides, plant growth reg-
ulators and rodenticides) and use of chemicals have been increased at 
global level from 2.2 million tons in 1990 to 41 million tons in 2017. 
Therefore, a well-defined strategy should be followed for combating 
different crop diseases using environmental friendly approaches [24]. 
The induction of natural defence systems by the applications of SEs can 
serve as a preferred alternative being environmentally friendly, biode-
gradable and non-toxic to the flora and fauna [29]. Marine algae serve as 
a valuable renewable resource of numerous elicitors for inducing varied 
defence responses. This review discusses the applications of different 
seaweed constituents and extracts to control plant disease. The 
composition, mechanism and function of different SEs towards regu-
lating the antioxidative pathways, genes expression and hormones 
synthesis are also discoursed elaborately (Fig. 1). 

2. Effect of different seaweeds constituents as bio-elicitors for 
developing disease tolerance 

The bio-elicitors induce the natural defence system of plants in 
response to various diseases. The induction of the defence mechanisms 
of plants can be activated by the elicitors from pathogens or the host 
itself in order to acquire the SAR [30]. Elicitors have been isolated from 
bacteria, fungi, oomycetes [31], algae [32], and can be broadly cate-
gorized as proteins, peptides, fatty acids, glycoproteins, lipids, oligo-
saccharides, and polysaccharides [31–33]. Different marine algae are 
rich source of nutrients and bioactive compounds, which can improve 
the cellular metabolism, growth and also disease tolerance in plants [6]. 
In some studies pure forms of polysaccharides (Table 1), whereas, in 
others crude SEs (Table 2) have been analyzed for their efficacies to-
wards disease management in plants in order to control fungal, bacterial 
and viral pathogens. The role of different algal polysaccharides such as 
carrageenans, fucans, laminarans and ulvans is further discussed as 
defence molecules to protect plants against various diseases in this 
review. 

3. Carrageenans 

Carrageenans are linear, partially hydrophilic sulphated galactans 
composed by alternate units of D-galactose and 3,6-anhydrogalactose 
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Fig. 1. Mechanism of disease resistance in plants, ABA: Abscisic acid, AOS: alleneoxide synthase, APOX: ascorbate peroxidase, CHIT: chitinases, CYP: cytochrome 
P450, ET: ethylene, ETR: ethylene receptor, GPOX: guaiacol peroxidase, IAA: indole-3-acetic acid, JA: Jasmonic acid, LOX: Lipoxygenase, PAL: Phenylalanine 
ammonia lyase, POD: peroxidase, PPO: Polyphenoloxydase, PR: Pathogenesis related, SA: Salicylic acid, TF: Transcription factors. 
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Table 1 
Effect of different algal bio-elicitors on the defence response of different plant spp.  

S. 
no. 

Elicitor Algal species Casual organisms Host plant Application Response of plants References 

Red algae 
1. κ, λ, and 

ι-carrageenans 
– Trichoplusia ni Arabidopsis Sprayed two times on fully 

expanded plants at 5 
d intervals and after 48 h of 
second spray infestation was 
performed 

Increased expression of defence- 
related genes isothiocyanates and 
nitriles 

[46] 

2. κ-carrageenan Hypnea 
musciformis 

TMV Tobacco Infiltration in mesophyll cells 
and after 4–8 d TMV 
inoculation was performed 

Increased expression of defence- 
related hormones and 
metabolites. Increased 
strengthening of cell walls 

[45] 

3. κ-carrageenan Kappaphycus 
alvarezii 

Colletotrichum 
gloeosporioides (Penz.) 
Sacc. 

Capsicum 
annuum Linn. 

Leaves sprayed once and after 
24 h treated with pathogen 

Increased expression of defence- 
related genes and proteins 

[101] 

4. κ/β-carrageenan Tichocarpus 
crinitus 

TMV Tobacco Leaves inoculated/rubbed 24 
h before or after infection 

Interfering cell replication [43] 

5. κ/β-carrageenan T. crinitus Potato 
Virus-X 

Datura 
stramonium 

Leaves sprayed and after 24 h 
infected with pathogen 

Stimulation of lytic processes 
resulted in the destruction of 
viral particles 

[44] 

6. λ-Carrageenan – Sclerotinia sclerotiorum Arabidopsis Two sprays on fully expanded 
plants at 5 d intervals and 
after 48 h of second spray 
infestation was performed 

Increased expression of defence- 
related genes and enzymes 

[40] 

7. λ-Carrageenan – TCDVd Tomato Sprayed on leaves then after 
48 h infestation was 
performed 

Increased expression of defence- 
related genes and enzymes 

[27] 

8. λ-Carrageenan Acanthophora 
spicifera 

Phytophthora palmivora Rubber tree Leaves sprayed once and after 
24 h treated with pathogen 

Increased expression of defence- 
related genes and enzymes 

[102] 

9. λ-Carrageenan – Zymoseptoria tritici Wheat Sprayed once then after 5 
d infestation was performed 

Increased expression of SA- and/ 
or JA-dependent signaling 
pathways 

[103] 

10. Oligo-carrageenans – TMV, Botrytis cinerea and 
Pectobacterium 
carotovorum 

Tobacco Leaves sprayed once a week 
for three times, and after 45 
d treated with pathogen 

Increased expression of defence- 
related enzymes 

[41]  

Brown algae 
11. β-1,3 Glucan Laminaria 

digitata 
Erwinia carotovora Tobacco Infiltration of elicitor was 

done and after 5 d pathogen 
was applied 

Increased expression of defence- 
related enzymes, SA and PR 
proteins 

[59] 

12. β-1,3 Glucan L. digitata B. cinerea, Plasmopara 
viticola 

Grapevine Leaves incubated with elicitor 
and after 24 h inoculated with 
pathogen 

Increases expression of defence- 
related genes and enzymes 

[60] 

13. β-1,3 Glucan L. digitata P. visticola Grapevine Sprayed with elicitor and after 
2 d pathogen was applied 

Increased expression of defence- 
related genes, hormones, callose, 
phenol depositions, and cell 
death 

[62] 

14. Fucan Pelvetia 
canaliculata 

TMV Tobacco Infiltrated Increased expression of defence- 
related enzymes, hormones, 
phytoalexin, scopoletin and PR 
proteins 

[53] 

15. Fucoidan Fucus 
evanescens 

TMV Tobacco Leaves infiltrated with elicitor 
and after 5 d inoculated with 
TMV 

Increased expression of defence- 
related genes 

[54] 

16. Fucoidan Lessonia vadosa – Tobacco Sprayed whole plant Increased expression of defence- 
related enzymes 

[52] 

17. Galactan Schizymenia 
binderi 

TMV Tobacco Sprayed once a week, for 1 
month and after 15 
d inoculated with TMV 

Increased expression of defence- 
related enzymes and secondary 
metabolites 

[92] 

18. Guluronic acid L. trabeculata TMV Tobacco Sprayed once a week, for 1 
month and after 15 
d inoculated with TMV 

Increased expression of defence- 
related enzymes and secondary 
metabolites 

[92] 

19. Laminarin L. digitata TMV Tobacco and 
Arabidopsis 

Leaves infiltrated with 
elicitors and after 3 and 8 
d inoculated with TMV 

Induced expression of PR1 genes 
and PR proteins 

[56] 

20. Laminarin L. digitata TMV Tobacco Leaves infiltrated and after 8 
d inoculated with TMV 

Increased the expression of genes 
encoding O-methyltransferases of 
the phenylpropanoid pathway 

[104] 

21. Laminarin L. digitata Blumeria graminis Wheat Sprayed and after 2 d treated 
with pathogen 

Increased expression of defence- 
related enzymes 

[105] 

22. Laminarin L. digitata B. cinerea, Sphaerotheca 
macularis and 
Mycosphaerella fragariae 

Strawberry Sprayed during blooming and 
twice before harvest 

Reduced infection by 50–70% [106] 

23. Laminarin L. digitata P. viticola Grapevine Leaves sprayed and after 2 
d infected with pathogen 

Increased expression of defence- 
related genes 

[107] 

24. Laminarin L. digitata P. viticola Grapevine Increased defence response [108] 

(continued on next page) 
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joined by α-1,3 and β-1,4-glycosidic linkage [34]. These polysaccharides 
have six basic types of carrageenans viz., iota (ι), kappa (κ), lambda (λ), 
mu (μ), nu (ν), and theta (θ) [35]. The κ, ι and λ-carrageenans dimers 
have one, two and three sulphated groups, respectively, possessing 20%, 
33% and 41% sulphate content, respectively [36]. The κ, ι and λ-car-
rageenans have been reported as elicitors to control disease in a few 
crops. Carrageenan ratios, differ according to the algal species, and in 
some red algae carrageenans are found to be >40%, by dry weight. The 
Kappaphycus alvarezii and Hypnea musciformis are sources of κ-carra-
geenan, whilst Eucheuma denticulatum and Gigartina pistillata have a 
greater preponderance of ι- in particular and some λ-carrageenan, 
respectively [36,37]. 

Applications of carrageenans and their oligosaccharides have been 
shown to activate defence system in some plants and animals and their 
efficacy may depend on the level of sulphation [26]. The λ-carrageenans 
have the highest levels of sulfphation followed by κ and ι carrageenans. 

The use of λ-carrageenan has been shown to have benefits for the 
management of disease control caused by different microorganisms 
[38]. λ-Carrageenan was found to be active against Phytophthora para-
sitica in tobacco cells and its application led increased expression of 
defence-related genes encoding for sesquiterpene cyclase, chitinase and 
proteinase inhibitor. The expression of lipoxygenase (LOX) and ACC 
oxidase (ACO), whose gene expressions lead to JA and ET biosynthesis, 
were highly induced, and the amount of cellular SA was increased in 
presence of the polysaccharide elicitor [39]. An increase in activity of 
oxalate oxidase and the expression of JA-signaling associated genes, e.g., 
alleneoxide synthase (AOS), plant defensin (PDF1.2) and pathogenesis 
related (PR-3) were observed with the application of highly sulphated 
λ-carrageenan (35% sulphation) in Arabidopsis thaliana. The λ-carra-
geenan treatment produced resistance against Sclerotinia sclerotiorum 
infection, whereas the less sulphated ι-carrageenan (30% sulphation) 
exhibited enhanced susceptibility [40]. 

Table 1 (continued ) 

S. 
no. 

Elicitor Algal species Casual organisms Host plant Application Response of plants References 

Sprayed and after 2 
d inoculated with pathogen 

25. Laminarin L. digitata P. viticola Grapevine Leaf disc treated and after 48 h 
inoculated with pathogen 

Increased expression of 
metabolic pathway 

[109] 

26. Laminarin L. digitata Stethynium empoasca Tea plant Leaves were sprayed and then 
treated with leafhopper 

Increased expression of defence- 
related genes, enzymes and 
secondary metabolites 

[110] 

27. Mannuronic acid L. vadosa TMV Tobacco Sprayed once a week, for 1 
month and after 15 
d inoculated with TMV 

Increased expression of defence- 
related enzymes and secondary 
metabolites 

[92] 

28. Oligo-sulphated- 
galactan 

S. binderi TMV Tobacco Sprayed with elicitor once per 
week for 2 weeks and then 
infected with TMV in a single 
leaf 

Increased expression of defence- 
related enzymes 

[47]  

Green algae 
29. Glucuronan and 

Ulvan 
Ulva lactuca Fusarium oxysporum Tomato Internodes infiltrated and 

after 24 h treated with 
pathogen 

Increased expression of defence- 
related enzymes 

[30] 

30. Glucuronan and 
oligoglucuronans 

U. lactuca Penicillium expansum and 
B. cinerea 

Apple fruit Treated at wounded zone and 
after 24 h inoculated with 
pathogen 

Increased expression of defence- 
related enzymes, lignins and 
phenolics 

[111] 

31. Ulvan U. lactuca A. brassicicola and 
Colletotrichum 
higginsianum 

Arabidopsis Sprayed once then after 3 
d infestation was performed 

Increased resistance against 
pathogen 

[112] 

32. Ulvan U. lactuca Verticillium dahliae Olive Twigs soaked in elicitor and 
after 24 h soaked in pathogen 
solution 

Stimulated phenolic metabolism [75] 

33. Ulvan U. lactuca F. oxysporum 
f. sp. phaseoli (Fop) 

Common 
bean 

Plants sprayed thrice at 12, 15 
and 18 d after seeds sowing on 
pre-infested soil 

Reduced fungal colonization [113] 

34. Ulvan U. fasciata C. lindemuthianum Bean Sprayed twice at 2 d intervals 
and then after 2 d treated with 
pathogen 

Reduced anthracnose severity [50] 

35. Ulvan U. fasciata B. graminis Rice, wheat 
and barley 

Sprayed twice and then after 
24 h treated with pathogen 

Increased chitin-elicited 
oxidative burst 

[72] 

36. Ulvan U. fasciata Uromyces appendiculatus Bean Sprayed once or twice with 
elicitor and then after 3 d and 
6 d treated with pathogen 

– [69] 

37. Ulvan U. fasciata C. lindemuthianum Bean Sprayed twice at 3 d and 6 
d and after inoculated with 
pathogen 

Increased expression of defence- 
related enzymes 

[70] 

38. Ulvan U. fasciata A. brassicicola Arabidopsis Sprayed once then after 3 
d treated with pathogen 

Increased expression of NADPH 
oxidase activity, hydrogen 
peroxide 

[114] 

39. Ulvan and 
Oligoulvans 

U. lactuca B. cinerea and P. 
expansum 

Apple Treated at wounded zone and 
after 12 h inoculated with 
pathogen 

Increased expression of defence- 
related enzymes 
and metabolites 

[74] 

40. Ulvan U. armoricana C. gloeosporioides Papaya fruit Treated at wounded zone and 
after 2 h inoculated with 
pathogen 

Increased expression of defence- 
related enzymes 

[115] 

41. Ulvan Ulva sp. – Barrel clover Sprayed either once at 3 d or 
twice at 3 d and 6 d before 
inoculation with pathogen 

Increased expression of defence- 
related hormones 

[116] 

PR: pathogenesis related, SA: salicylic acid, TCDVd: tomato chlorotic dwarf viroid, TMV: tobacco mosaic virus. 
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Table 2 
Effect of different seaweed extracts on the disease tolerance in different plant spp.  

S. 
no. 

Algal species (extract/ 
commercial name) 

Host plant Disease Organism Application Response of plants References 

Red algae 
1. Acanthophora spicifera 

(SWC) 
Rice Fungal blast Pyricularia oryzae Sprayed one time Increased expression of 

defence-related enzymes 
[98] 

2. A. spicifera Tomato and 
sweet pepper 

Early blight, 
bacterial spot 

Alternaria solani and 
Xanthomonas 
campestris 

Sprayed 4 times at 2 w 
interval and after 6 h of 
first spray treated with 
pathogen 

Increased expression of 
defence-related genes, 
hormones and enzymes 

[117] 

3. Corallina mediterranea 
and Corallina officinalis 

Tomato Root-knot Meloidogyne incognita Soil drenched twice after 
inoculation 

Increased expression of 
defence-related genes and 
enzymes 

[118] 

4. Gelidium serrulatum Tomato Early blight and 
bacterial spot/ 
blight 

A. solani and X. 
campestris 

Sprayed twice at 15 
d interval and after 6 h 
treated with pathogens 

Increased expression of 
defence-related enzymes and 
genes 

[119] 

5. Gracilaria confervoides Cucumber – Rhizoctonia solani, 
Fusarium solani and 
Macrophomina 
phaseolina 

7 d pre-infested soil was 
amended with dry algae 
powder and after that 
seeds were sown 

– [120] 

6. Kappaphycus alvarezii (K- 
sap) 

Tomato Charcoal rot M. phaseolina Sprayed one time Increased expression of 
defence-related genes and 
hormones 

[85] 

7. Kappaphycus alvarezii 
(BFIICaB®) 

Tomato – F. oxysporum Spayed twice at 5 
d interval after 
inoculation with 
pathogen 

Increased expression of 
defence-related enzymes 

[121] 

8. Melanothamnus 
afaqhusainii 

Eggplant Root rot and root 
knot 

M. phaseolina, F. solani 
and F. oxysporum 

Dry powder application  [122] 

9. Melanothamnus 
afaqhusainii 

Watermelon Root rot and root 
knot 

M. phaseolina, R. 
solani and 
F. oxysporum 

Dry powder application  

10. Solieria robusta Soybean Root rot F. solani Dry powder application – [123] 
11. BKPSGII® (K. alvarezii X 

Sargassum sp.)a 
Tomato – F. oxysporum Spayed twice at 5 

d interval after 
inoculation with 
pathogen 

Increased expression of 
defence-related enzymes 

[121]  

Brown algae 
12. Ascophyllum nodosum 

(Maxicrop) 
Strawberry Red spider 

infestation 
Tetranychus urticae Sprayed seven times 

twice-weekly 
Reduced red spider mite 
incidence 

[124] 

13. A. nodosum (ANE) Strawberry Powdery mildew Podosphaera aphanis Sprayed twice 1st and 
5th d 

Increased expression of 
defence-related enzymes and 
secondary metabolites 

[95] 

14. A. nodosum (SW) Carrot Black rot and 
botrytis blight 

A. radicina and 
Botrytis cinerea 

Sprayed with SW then 
inoculated 6 h later with 
the pathogens, again 
sprayed with SW at 10 
and 20 d after 
inoculation 

Increased expression of 
defence-related genes, 
proteins and enzymes 

[76] 

15. A. nodosum (Stimplex™) Cucumber Alternaria blight, 
gummy stem blight, 
fusarium rot, stem 
rot and botrytis 
blight 

A. cucumerinum, 
Didymella applanata, 
F. oxysporum and 
B. cinerea 

Sprayed or drenched 
twice at 10 d interval 
and after 6 h treated with 
pathogens 

Increased expression of 
defence-related genes, 
enzymes and secondary 
metabolites 

[77] 

16. A. nodosum 
(Marmarine®) 

Cucumber Damping-off Phytophthora melonis Sprayed or drenched 
twice at 5 d intervals 

Increased expression of 
defence-related genes and 
enzymes 

[80] 

17. A. nodosum (ANE) Arabidopsis Bacterial speck and 
stem rot 

Pseudomonas Syringae 
and Sclerotinia 
Sclerotiorum 

Irrigated and sprayed Increased expression of JA- 
related genes 

[79] 

18. A. nodosum (Stella 
Maris®) 

Arabidopsis Bacterial disease P. syringae and 
X. campestris 

Seedlings were treated 
one time 

Increased expression of 
defence-related genes 

[83] 

19. A. nodosum (ANE) Tomato Alternaria blight 
and bacterial leaf 
spot 

A. solani and 
X. campestris 

Sprayed or root- 
drenched at 15 
d intervals in the field 

Increased expression of JA/ET 
pathway genes, defence- 
related enzymes and phenols 

[81] 

20. A. nodosum (Dalgin®) Tomato Damping-off P. capsici Sprayed one time Increased expression of genes 
and defence-related enzymes 

[94] 

21. A. nodosum (Stimplex®) Tomato and 
sweet pepper 

Bacterial spot and 
early blight 

X. campestris and 
A. solani 

Sprayed 3 times at 10- 
d intervals 

Increased expression of 
defence-related gene and 
enzymes 

[82] 

22. A. nodosum (AMPEP) 
(Acadian Seaplants) 

Kappaphycus Neosiphonia 
apiculate endophyte 
infection 

Neosiphonia apiculata Dipped for 45 min in 
AMPEP 

Increased expression of H2O2 [125] 

23. A. nodosum (AMPEP) Kappaphycus Ice-ice, goose 
bumps 

Polysiphonia 
subtilissima 

Kappaphycus treated for 
a period of 1 h and then 
incubated for growth 

Activation of natural defence 
against pathogens 

[126,127] 

(continued on next page) 
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Table 2 (continued ) 

S. 
no. 

Algal species (extract/ 
commercial name) 

Host plant Disease Organism Application Response of plants References 

24. A. nodosum (AMPEP) Kappaphycus Epiphyte infection Neosiphonia sp. Pre-infected seedling 
was soaked for 30 min 

Reduced infection [128] 

25. A. nodosum (Acadian®) Grapevine Bunch rot A. cinerea Sprayed six times 
between the pea-size 
fruit stage and harvest 

Increased expression of 
defence-related genes 

[84] 

26. A. nodosum and Ecklonia 
maxima (Kelpak®, 
OSMO®) 

Tomato Root-knot M. chitwoodi and 
M. hapla 

Root drenched for 9 
times at 5 d intervals and 
after 2 w of 1st treatment 
inoculated with 
pathogen 

Reduced hatching, and 
sensory perception 

[129] 

27. A. nodosum (LSE) Wheat Fusarium head 
blight 

F. graminearum Seedlings were drenched 
and after 48 h sprayed 
with pathogen 

Increased expression of 
defence-related gene and 
enzymes 

[130] 

28. A. nodosum (Dalgin 
Active®) 

Wheat and 
durum wheat 

Septoria tritici 
blotch 

Zymoseptoria tritici Sprayed one time and 
after 48 h inoculated 
with pathogen 

Increased expression of 
defence-related PR protein, 
antioxidant metabolism, 
phenylpropanoid, and 
octadecanoid-based pathways 

[131] 

29. A. nodosum (Maxicrop 
Original®) 

Arabidopsis Root-knot M. javanica Applied in culture 
medium and after 10 d of 
germination inoculated 
with nematode 

Decreased number of females 
nematodes 

[132] 

30. Cystoseira 
myriophylloides, 
Laminaria digitata, and 
Fucus spiralis (used 
separately) 

Tomato Wilting and crown 
gall 

Verticillium dahlia and 
Agrobacterium 
tumefaciens 

Seed imbibition and 
seedlings sprayed two 
times at 3 and 7 d and 
after that inoculated 
with pathogen 

Increased expression of 
defence-related enzymes 

[99] 

31. C. myriophylloides, 
L. digitata and F. spiralis 
(SE) (used separately) 

Tobacco Wild fire P. syringae Seed soaked Increased expression of 
defence-related enzymes 

[100] 

32. Durvillaea potatorum and 
A. nodosum (Seasol®) 

Broccoli Clubroot Plasmodiophora 
brassicae 

Soil drenched and after 
28 d infected with 
pathogen 

Decreased the number of 
plasmodia on root hairs 

[133] 

33. Durvillaea potatorum and 
A. nodosum (Seasol®) 

Arabidopsis – P. cinnamomi Root drenched and after 
7 d inoculated with 
pathogen 

Increased expression of 
defence-related genes and 
ROS-based signaling pathways 

[134] 

34. Ecklonia maxima 
(Kelpak®) 

Tomato Root-knot 
nematodes 
infestation 

M. incognita Sprayed or soil drenched – [135] 

35. Ecklonia maxima 
(Kelpak®) 

Pepper Verticillium Wilt V. dahliae Soil drenched and after 3 
d inoculated with 
pathogen 

– [136] 

36. L. digitata Grapevine Gray mould and 
downy mildew 

B. cinerea and 
P. viticola 

In cell suspensions and 
sprayed on both leaf 
surfaces 

Increased expression of 
defence-related genes 

[59] 

37. Padina pavonia (SWC) Rice Fungal blast Pyricularia oryzae Sprayed one time Increased expression of 
defence-related enzymes 

[98] 

38. Padina gymnospora and 
Sargassum liebmannii 
(used separately) 

Tomato Early blight A. solani Sprayed one time Increased expression of 
defence-related enzymes and 
genes 

[93] 

39. Sargassum filipendula Tomato Early blight and 
bacterial spot/ 
blight 

A. solani and 
X. campestris 

Sprayed twice at 15 
d interval and after 6 h 
treated with pathogens 

Increased expression of 
defence-related enzymes and 
genes 

[122] 

40. S. fusiforme (AP) Tomato Powdery mildew, 
late blight and gray 
mould 

Oidium spp., P. 
infestans and 
B. cinerea 

Sprayed one time Induced hypersensitive cell 
death and O2

●- production 
[137] 

41. S. polycystum Rubber tree Leaf fall P. palmivora Seedlings were sprayed 
one time 

Increased expression of 
defence-related enzymes, 
hormones and phytoalexin 
scopoletin 

[90] 

42. S. tenerrimum Cotton Red cotton pest Dysdercus cingulatus Seeds were soaked Insecticidal activity might be 
due to cytotoxic oxysterol and 
hydroper 24 cholesterol 

[138] 

43. S. tenerrimum (S-extract) Tomato Charcoal rot M. phaseolina Sprayed twice at 
vegetative and 
reproductive stage 

Increased expression of 
defence-related enzymes and 
hormones 

[91] 

44. S. wightii (Dravya) Cotton Bacterial blight X. campestris Seed soaked followed by 
3 foliar sprays at the 
intervals of 10 d 

Increased defence-related 
enzymes 

[97] 

45. S. tenerrimum, S. wightii 
and S. swartzii 

Sunflower Root rotting M. phaseolina and 
F. solani 

Seeds showing on 
amendment soil 

– [139] 

46. S. vulgare Potato Pythium leak Pythium 
aphanidermatum 

Wounded tuber treated 
and after 2 h inoculated 
with pathogen 

– [140] 

47. S. vulgare Potato Fusarium dry rot F. oxysporum – [141] 

(continued on next page) 
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The effects of κ-, ι- and λ-oligo-carrageenans against tobacco mosaic 
virus (TMV), Botrytis cinerea and Pectobacterium carotovorum were 
demonstrated by Vera et al. [41]. In this study, all of the oligo- 
carrageenans induced protection against P. carotovorum with similar 
efficiencies, whereas ι- and λ-oligo-carrageenans provided protection 
against B. cinerea and only λ-oligo-carrageenan provided protection 
against TMV. The oligo-carrageenans application induced phenylala-
nine ammonia lyase (PAL) activity and accumulation of phenolics. PAL 
helps in the synthesis of phenylpropanoid, a precursor of different 
phenolic compounds such as, flavonoids, isoflavanoids, anthocyanins, 
plant hormones, phytoalexins, and lignins leading to plant defence [42]. 
Similarly, κ-, ι- and λ carrageenans were tested on tomato plants against 
the tomato chlorotic dwarf viroid (TCDVd) [26]. Tomato plants treated 
with λ- carrageenan showed a higher resistance against TCDVd by 
controlling the viroid replication as well as by up-regulation of JA- 
mediated genes expression of LOX, AOS and pathogenesis-related pro-
teins [26]. The application of κ/β-carrageenan from Tichocarpus crinitus 
reduced TMV levels on tobacco leaves [43]. The κ/β- carrageenan 
application on Datura stramonium displayed an increased size of 
nucleoli, mitochondrial counts and membranes of rough endoplasmic 
reticulum. They have also stimulated several lytic processes in 
D. stramonium, preventing the intracellular accumulation and trans-
location of Potato Virus X particles [44]. 

The sulphated polysaccharide 4 (SPS4, containing 98% 

κ-carrageenan) from the red alga H. musciformis, provided anti-viral 
activity against TMV by activation of SA-dependent pathogenesis- 
related genes PR-1a, PR-2 and PR-5 and JA-dependent PR-3 and Def1.2 
(member of PR12 genes group and encoding defensin protein) [45]. The 
κ-carrageenan was also found to act as an elicitor of defence responses in 
A. thaliana against the insect Trichoplusia ni, whereas, no significant ef-
fect was observed with λ- and ι-carrageenans [46]. Thus, λ-carrageenans 
can be used a potential defence-primer or priming agent, possibly due to 
its high sulphate content compared to other carrageenans. The oligo- 
sulphated galactans poly-GA from Schyzimenia binderi, structurally 
related to lambda oligo-carrageenan, elicited the reduced number of 
necrotic lesions caused by TMV and provided long term tolerance to 
protection. The decrease in TMV-capsid protein gene expression in the 
distant leaves reflected the systemic protection against the TMV. The 
treated plants also elicited higher activity of PAL and increased accu-
mulation of conjugated phenylpropanoid compounds. All together this 
study revealed that a systematic resistance was acquired by using the 
Poly-GA from S. binderi against the TMV [47]. 

4. Fucans 

Fucans form the major constituent of brown seaweed cell walls, 
comprising 5–20% of the dry weight [48,49]. Fucans are structurally 
ramified heterogeneous sulphated polysaccharides composed of a 

Table 2 (continued ) 

S. 
no. 

Algal species (extract/ 
commercial name) 

Host plant Disease Organism Application Response of plants References 

Wounded tuber treated 
and after 2 h inoculated 
with pathogen 

48. S. vulgare Tomato and 
sweet pepper 

Early blight, 
bacterial spot 

A. solani and X. 
campestris 

Sprayed 4 times at 2 w 
interval and after 6 h of 
first spray treated with 
pathogen 

Increased expression of 
defence-related genes, 
hormones and enzymes 

[117] 

49. Spatoglossum variabile Eggplant and 
watermelon 

Root rotting and 
Root knot 

M. phaseolina, F. 
solani, F. oxysporum 
and nematodes 

Dried powder 
application 

Significant suppressive effect 
on root rotting fungi F. solani, 
M. phaseolina and root knot 

[122] 

50. Stokeyia indica Eggplant and 
watermelon 

Root rotting and 
Root knot 

M. phaseolina, R. 
solani, F. oxysporum 
and nematodes 

Dried powder 
application 

– [122] 

51. Turbinaria conoides – Root rot F. oxysporum Poisoned food technique – [142]  

Green algae 
52. Caulerpa sertularioides 

and Ulva lactuca (used 
separately) 

Tomato Early blight A. solani Sprayed one time and 
after 24 h treated with 
pathogen 

Increased expression of 
defence-related enzymes and 
genes 

[93] 

53. U. armoricana Common bean, 
grapevine and 
cucumber 

Powdery mildew Erysiphe polygoni, E. 
necator and 
Sphareotheca fuliginea 

Sprayed either once at 3 
d or twice at 3 and 6 
d and after that 
inoculated with 
pathogen 

Increased expression of a 
reporter gene regulated by a 
defence-gene promoter 

[86] 

54. U. fasciata Tomato Root-knot M. incognita Soil drenched twice 
directly after inoculation 

Increased expression of 
defence-related genes and 
enzymes 

[118] 

55. U. lactuca Banana Root knot Meloidogyne spp. Dried powder added to 
the soil 

– [143] 

56. U. lactuca Tomato Early blight and 
bacterial spot/ 
blight 

A. solani and 
X. campestris 

Sprayed twice at 15 
d interval and after 6 h 
treated with pathogens 

Increased expression of 
defence-related enzymes and 
genes 

[119] 

57. U. lactuca (SWC) Rice Fungal blast P. oryzae Sprayed one time Increased expression of 
defence-related enzymes 

[98] 

58. U. lactuca Apple Blue and gray 
mould 

Penicillium expansum 
and B. cinerea 

– Increased expression of 
antioxidant enzyme and 
phenylpropanoid metabolism 

[66] 

59 Ulva spp. (UE) Barrel clover Anthracnose Colletotrichum trifolii Leaves were infiltrated 
or sprayed 

Increased expression of 
defence-related genes and 
phytoalexins, PR proteins and 
cell wall proteins 

[73] 

SWC - seaweed concentrate, ANE - Ascophyllum nodosum extract, SW - Seaweed Ascophyllum nodosum, AMPEP - Ascophyllum marine plant extract Powder, SE - seaweed 
extracts, AP - algal product, UE - Ulva extract. 

a Combined treatment of red and brown algae.  
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central backbone of fucose. Structural differences exist in fucans in 
different algal species and also within the same species. Fucans have 
been classified into two groups [50], viz., the first group includes the 
fucans from Saccharina latissima (formerly Laminaria saccharina), Lami-
naria digitata, Analipus japonicus, Cladosiphon okamuranus, and Chorda 
filum having central chains composed of (1 → 3)- linked α-L-fucopyr-
anose residues. The second group of fucans isolated from Ascophyllum 
nodosum and Fucus species possessed central chains comprising 
repeating (1 → 3) and (1 → 4)-linked α-L-fucopyranose residues [51]. 
These fucans are reported to function as elicitors having different bio-
logical properties such as anti-viral, anti-inflammatory and anticoagu-
lant. However, very limited studies have been carried out using the 
application of pure fucans on disease tolerance in plants, as compared to 
other polysaccharides. The native and the partially depolymerized 
fraction of fucoidan extracted from Lessonia vadosa imparted significant 
activation of PAL, LOX and glutathione S-transferase (GST) defence 
enzymes in tobacco plants [52]. The oligoflucan from the Pelvetia 
canaliculata induced alkalinization and oxidative burst in the culture 
medium of tobacco suspension cells followed by induction of PAL and 
LOX activities. Interestingly, the infiltration of the same oligoflucan in 
tobacco leaves caused accumulation of SA, phytoalexin scopoletin and 
PR proteins (PR-1, PR-2, PR-3 and PR-5), indicated the potential role 
towards eliciting the tobacco defence signaling pathway. Its application 
strongly reduced the number and size of lesions induced by TMV, thus 
suggest its potential role in imparting local resistance and SAR against 
TMV [53]. The application of fucoidan from Fucus evanescens in com-
bination with virus particles on tobacco plant revealed reduced necrotic 
lesions and more agglutination of virus particles as compared to leaves 
inoculated with virus alone [54]. 

5. Laminarans 

The laminarin polysaccharides are found in brown algae and is a 
linear homopolysaccharide with linkages β (1 → 3): β(1 → 6) in a ratio of 
3:1. Three simple ramifications of β-glucose at C-6 position makes for an 
average polymerization degree of 25 glucose units represented by lam-
inaran [55,56]. Structural analyses of laminarin demonstrated that the 
chain length and the presence of sulphate residues determined its elic-
itation activity [57]. Laminarins are found in the brown algae as Lami-
naria hyperborea and L. digitata and to a lesser extent in Fucus serratus and 
F. vesiculosus [58]. Stimulation of defence response by laminarins were 
studied in cell suspension cultures of tobacco [59], grapevine [60] and 
rice [61]. Activation of protein kinase, Ca2+ influx, oxidative burst, 
alkalinization of extracellular media, increase in chitinase and β-1, 3- 
glucanase activities and phytoalexins production were observed by the 
applications of laminarin. The application of laminarin on tobacco, 
elicited phytoalexin accumulation and expression of PR-proteins when 
treated with Erwinia carotovora [59]. Similarly, the application of 
laminarin induced PR-protein expression on the treatment of B. cinerea 
and Plasmopara viticola [60]. 

The β-1, 3-glucan laminarin from the brown algae L. digitata was 
found as an effective elicitor in reducing the disease response caused by 
B. cinerea and P. viticola by more than 50% in grape plants. The appli-
cation of laminarin to grape plants revealed higher expression of 
different genes such as LOX, GST, PAL, stilbene synthase 1 (STS1), 
polygalacturonase-inhibiting protein (PGIP) and chitinases (CHIT1b, 
CHIT3, CHIT4c) [60]. Ménard et al. observed that β-1, 3-glucan sulphate 
induced SA-dependent signaling in Nicotiana tabacum and A. thaliana 
[56]. In N. tabacum an oxidative burst by laminarin sulphate PS3 was 
Ca2+ dependent but partially kinase independent, whereas the laminarin 
induced strictly kinase-dependent oxidative burst. Interestingly, lami-
narin induced the expression of ethylene- dependent protein, while PS3 
activated the expression of SA-dependent proteins. The sulphated 
laminarin also induced resistance in grapevine cultivar (Vitis vinifera) 
against downy mildew caused by P. viticola. This resistance in grapevine 
was associated with H2O2 production at the infection sites, upregulation 

of defence-related genes, depositions of callose and phenol, and hyper-
sensitive response-like cell death [62]. 

6. Ulvans 

Ulvans are complex heteropolysaccharides which contain rhamnose 
(16.8–45.0%, p/p), xylose (2.1–12.0%), glucose (0.5–6.4%), uronic acid 
(6.5–19.0%), iduronic acid (1.1–9.1%) and sulphate (16.0–23.2%). 
Mannose and galactose also have been found in ulvans from some Ulva 
spp. [63]. These sugars are structurally grouped by two main repeating 
disaccharides, which are: the ulvabiuronic acid type A (β-DGlcA (1 → 4) 
α-L-Rha 3S → 1) and type B (α-L-IdoA (1 → 4) α-L-Rha 3S → 1), which 
serve as elicitors in controlling the disease tolerance in the plants 
[64,65]. Ulvan was extracted from Ulva fasciata and oligo-ulvans were 
derived by depolymerization of cell wall polysaccharides from other 
Ulva species, such as U. armoricana, U. rigida, U. lactuca, U. compressa 
and U. intestinalis [66,67]. The application of ulvans for disease toler-
ance in different plants has been reported by many researchers (Table 1). 
Treatment of plants with ulvan has shown the tolerance in the common 
bean plants against Uromyces appendiculatus [68,69]. The sulphated 
polysaccharides from the U. fasciata reduced the anthracnose (caused by 
Colletotrichum lindemuthianum) severity in bean plants [50,70]. The 
ulvan from U. fasciata also provided disease resistance against Glomer-
ella leaf spot (Colletotrichum gloeosporioides) on apple [71], and powdery 
mildew (Blumeria graminis) on wheat and barley [72]. The prior appli-
cation of Ulva extract on Medicago truncatula plants reported biosyn-
thesis of phytoalexins and PR protein after the treatment of 
Colletotrichum trifolii spores [73]. The application of Ulvan from 
U. lactuca to tomato [29], apple [74], and olive plants [75] provided 
tolerance to different fungal diseases by increasing different enzymes 
activities such as PAL, peroxidase (POD) and polyphenol oxidase (PPO). 
The U. lactuca bio-elicitors helped in reducing the impacts of infections 
in tomato plants caused by Fusarium oxysporum in an SA-dependent 
manner. It was quite interesting to see that the two polysaccharides, i. 
e. the glucuronan (un-sulphated homopolymer) and the ulvan (sulph-
ated heteropolymer) produced differential responses in the accumula-
tion of SA. The glucuronan had no significant elicitor effect, whereas the 
ulvan induced higher elicitor activity [29]. Different polysaccharides 
like guluronic acid (Poly-Gu), mannuronic acid (Poly-Ma) and sulphated 
galactan (Poly-Ga) from brown and red algae showed differential re-
sponses against TMV and with reduced number of lesions (9, 22 and 
74%, respectively) in tobacco by varied activities of different stress- 
related antioxidative enzymes, e.g. APOX (ascorbate peroxidase), 
DHAR (dehydroascorbate reductase), GR (glutathione reductase), PAL 
and GST [92]. 

7. Effect of different crude seaweed extracts on the disease 
tolerance 

In addition to the role of pure constituents derived from different 
seaweeds, as discussed earlier in this review, the role of crude SEs from 
different algae for disease management of plants have also been studied 
(Table 2). The proposed mechanisms of plant disease tolerance attrib-
uted to the applications of various SEs involves, up-regulation of various 
defence-related genes, plant hormones and defence enzymes, and these 
components interact and cross-talk to form a complex network facili-
tating disease tolerance in plants. Detailed transcriptomic and micro-
array analyses revealed the differential regulation of network of genes 
and transcription factors orchestrating the plant defence signaling 
pathway. The application of selected SEs (from a variety of brown, red 
and green algae) enhanced transcript expression of defence-related 
genes of various pathways such as: antioxidative (PPO, LOX), antimi-
crobial (β-1, 3-glucanase and PPO), pathogenesis-related (PRs), SA- 
related (PAL) and JA-related synthesis, thereby improving plant stress 
tolerance (Fig. 2). An application of A. nodosum extract (SW) to carrot 
showed a higher expression of PR-1, PR-5, chitinase, lipid transfer 
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protein (LTP), PAL, chalcone synthase and non-expressing pathogenesis- 
related protein (NPR-1) genes [76]. The same authors also observed the 
higher expression of chitinase, LOX, POD and PAL genes in cucumber 
[77]. The hydrolytic activities of chitinases and glucanases (GLU) on 
pathogen cell wall constituents like, chitin and glucan, respectively, help 
in releasing oligosaccharides, which act as elicitors to sustain the in-
duction levels of defence reactions [78]. The application of A. nodosum 
extract (ANE) was reported to provide the treated plants with resistance 
against Pseudomonas syringae by increasing the expression of the JA- 
dependent defence gene PDF1.2 [79]. Plants treated with 0.5% Mar-
marine, an A. nodosum derived extract (IFTC™, Amman, Jordan) 
showed a significant reduction in Phytophthora melonis infection and 
enhanced the activities of various defence-related genes in cucumber, e. 
g. pathogen-induced 4, LOX, PAL and galactinol synthase [80]. The ANE 
sprayed on to tomatoes and sweet peppers elicited a significantly higher 
expression of the PIN11 gene (i.e., a marker in the JA/ISR defence 
pathway) and ETR-1 gene (i.e., marker gene for the ethylene/ISR 
defence pathway), which are involved in JA or ET-signaling. The 
expression of PR-1 did not increase during the treatments of Xantho-
monas campestris pv. vesicatoria and Alternaria solani [81,82]. Another 
ANE product, i.e. Stella Maris® (Acadian) also enhanced the expression 
of transcription factors, WRKY30 and CYP71A12, and PR-1genes. 
WRKY30 is known to respond to H2O2 production, and is involved with 
SA and JA immunity-signaling pathway genes and cytochrome P450 is 
responsible for the production of phytoalexin (camalexin) having anti-
microbial functions [83]. The ANE (Acadian®)-treated vines reported 
higher expression of the VvPR-1 and VvCaS2 genes (for the synthesis of 
the β-1, 3-glucan callose) [84]. Application of a K. alvarezii extract (K- 
sap) promoted up-regulation of PR-1b1, PR-3 and PR-5 genes in tomato 
plants during Macrophomina stress [85]. Administration of a crude 
extract of U. armoricana comprising with ulvans having uronic acid and 
sulphated rhamnose reduced powdery mildew diseases in common 
bean, grapevine and cucumber as caused by Erysiphe polygoni, E. necator 
and Sphareotheca fuliginea pathogens, respectively [86]. An Ulva extract 
up-regulated a broad range of defence-related genes involved in the 
synthesis of phytoalexins, pathogenesis-related protein, cell wall protein 
and primary metabolism in M. trancatula as evidenced by DNA 

microarray analysis [73]. 
Phytohormones SA, JA and ET are synergistically and/or antago-

nistically regulated in response to different stresses, and are an impor-
tant component of the plant's stress signaling crosstalk [20]. SA, JA, and 
ET may act individually, or in combination, towards inducing resistance 
in plants against various pathogens [87]. The SA-dependent defence 
system showed activation of the SAR and induced PR proteins [79], 
whereas, the SA-independent activated the ISR, which was triggered by 
nonpathogenic microbes and was largely associated with JA and ET- 
dependent responses [88,89]. In addition to the stress-related hor-
mones, the growth and development-related phytohormones such as 
abscisic acid (ABA), auxins, cytokinins, brassinosteroids, gibberellins 
were shown to be involved with regulating plant defence, either alone or 
together with the primary defence hormones [85,20]. The ANE showed 
JA-dependent resistance in A. thaliana against P. syringae [79]. In the 
same study, the application of ANE was tested on Arabidopsis NahG 
transgenic plants (accumulate little or no SA), and on two mutant sics1 
(defect in SA biosynthesis) and jar1 (JA resistant). The NahG transgenic 
plants and ics1 showed less disease severity on ANE application, whereas 
jar1 mutant showed higher disease severity [79]. Enhanced levels of SA 
accumulation were observed in rubber tree plants further to the appli-
cation of Sargassum polycystum extract [90]. In addition, Sargsssum ten-
errimum extract (S-extract)-treated tomato plants produced higher levels 
of accumulation of SA when applied both at the vegetative and repro-
ductive stages of Macrophomina phaseolina infection [91]. Applications 
of K-sap alone and in combination with M. phaseolina on tomato plants 
showed enhanced accumulation of ABA, indole acetic acid (IAA), and 
SA, facilitating development of SAR [85]. 

It is very important to study the kind of enzymes activated in the host 
plant by the application of individual SE during defence response. The 
ANEs were widely tested for disease tolerance in different crops against 
various pathogens and it was observed that activation of defence-related 
enzymes also get expressed during defence mechanism. The applications 
of different types of commercial extracts or extracts prepared by 
different researchers from A. nodosum on different crop species, i.e. 
carrot [76], cucumber [77,80], tomato [81,82,94], sweet pepper [82], 
and strawberry [95], revealed higher activities of certain defence- 
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Fig. 2. Molecular and biochemical mecha-
nism of disease tolerance using the algal 
extract, ABA: Abscisic acid, ACO: 1-amino-
cyclopropane-1-carboxylate oxidase, ACS: 
Acetyl-coenzyme A synthetase, AOS: alle-
neoxide synthase, APOX: ascorbate peroxi-
dase, CHIT: chitinases, CYP: cytochrome 
P450, ET: ethylene, ETR: ethylene receptor, 
GLU: glucanases, GP: glutathione peroxi-
dase, GPOX: guaiacol peroxidase, GST: 
glutathione S-transferase, IAA: indole-3- 
acetic acid, ISR: induced systematic resis-
tance, JA: Jasmonic acid, LOX: Lip-
oxygenase, LTP: lipid transfer protein, PAL: 
Phenylalanine ammonia lyase, PDF1.2: 
plant defensin, PGIP: polygalacturonase- 
inhibiting protein, PINII: proteinase inhibi-
tor II, POD: peroxidase, PPO: Poly-
phenoloxydase, PR: Pathogenesis related, 
SA: Salicylic acid, SAR: Systemic acquired 
resistance, STS: stilbenesynthase1, SCP: phy-
toalexin scopoletin.   
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related enzymes including POD, PPO, PAL, chitinase and β-1,3-gluca-
nase. These studies reflected that almost identical responses were 
observed in terms of the kind of enzymes expressed by the application of 
the A. nodosum extract. The PAL, POD and phenolic compounds help in 
increasing the free phenolic pool which is basically utilized in enzyme 
activities, polymerization, and eventually synthesize lignin to help in 
disease tolerance [96]. Jayaraj et al. observed the higher lipoxygenase 
activity by the treatment of a commercial seaweed extract (SW) 
formulation containing ANE to cucumber plants which led to generation 
of ROS and superoxide anion radicals and singlet oxygen [76]. The 
active oxygen lead to oxidation of membrane lipids, resulted in the 
production of antifungal compound, e.g. phytoalexins and those 
involved in cell wall lignification and signal transduction. An extract of 
the brown alga Sargassum wightii (Dravya, a commercial product) 
application produced a higher accumulation of phenols and PPO in 
cotton plants against bacterial blight disease [97]. Applications of 
S. polycystum extract on rubber tree increased the activities of catalase 
(CAT), POD, β-1, 3-glucanase and phytoalexin scopoletin for preventing 
Phytophthora disease [90]. The CAT is a major enzyme that scavenges 
the H2O2 during stress condition, it was observed that CAT activity in 
rubber plant by applying S. polycystum extract was slightly increased 
compared to untreated plants. An extract of S. tenerrimum was applied at 
the vegetative stage and reproductive stage in tomato plants, which 
exhibited higher accumulation of antioxidative enzymes (superoxide 
dismutase, CAT, APOX and POD) with M. phaseolina treatment [91]. 
Flora and Rani, showed that SEs from Padina pavonia, Acanthophora 
spicifera and U. lactuca significantly reduced the severity of the fungal 
blast disease of rice caused by Pyricularia oryzae, in addition the PAL, 
POD, sugar, protein and starch also increased in rice in response to the 
fungi [98]. Extracts of the brown algae, i.e. Cystoseira myriophylloides, 
L. digitata, and F. spiralis individually applied to tomato plants revealed 
enhanced activities of PPO and POD against the tomato pathogen Ver-
ticillium dahlia [99]. The applications of C. myriophylloides and F. spiralis 
extracts also showed reduced crown gall disease in tomato plants caused 
by Agrobacterium tumefaciens [99]. Hernández-Herrera et al. had 
observed differential activity of the PPO, guaiacol peroxidase (GPOX), 
and trypsin inhibitory enzymes by the application of four different SEs 
(from U. lactuca, Caulerpa sertularioides, Sargassum liebmannii and Padina 
gymnospora) against a challenge by A. solani in tomato plants [93]. The 
PPO activity was found to be highest after applications of the U. lactuca 
extract. The GPOX activity was observed two-fold higher after the 
C. sertularioides treatment and four-fold higher in P. gymnospora-treated 
plants, as compared to their controls (without extract application). The 
activity of trypsin inhibitory enzymes was found high with all the four 
extracts. The SEs from F. spiralis, C. myriophylloides and L. digitata when 
used for priming the seeds of tobacco plants showed reduced symptoms 
of wild fire disease and higher H2O2 accumulation and enhanced activity 
of antioxidant enzymes including CAT, APOX, GPOX and PPO [100]. 

8. Conclusion 

The present review revealed the importance of seaweed-based bio- 
elicitors from red, brown and green algae towards disease management 
in different crop plants. The usage of SEs can serve as an alternative to 
commercially available chemicals, which are routinely used for disease 
management in agriculture, and can also help in ameliorating the 
environmental problems caused by chemicals for control of disease. 
Several research papers are now being published which shows the 
insight mechanism towards disease tolerance. SEs help in activation of 
the innate immunity of the plants by upregulation of various pathogenic- 
responsive genes and transcription factors, defence-related enzymes and 
hormones. Research had been carried out to standardize the various 
methods for preparation of extracts, time of applications, durations and 
mode of applications. The SEs have diversity in their constituents 
composition, thereby, they show differential regulation of tolerance 
towards different pathogens. To facilitate the increase in use of SEs for 

sustainable agriculture and moreover to develop the trust that SEs can 
help as bio-elicitor, different algal extract should be tested for different 
diseases on different plants and understand that why different source 
provides stress tolerance better than other. Further, it is very important 
to analyze and study SEs chemical constituents, also characterize the 
dosage, mode, duration and number of SE/SEs applications to different 
crops for sustainable achievement of results. However, on the basis of 
research carried out in this field, it is evident that the algal extract can 
induce natural defence in plants and has a great potential in managing 
the disease tolerance in crops. 
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