Paper

Research and deployment of bioenergy production from algae, a state of technology review

Lieve M.L. Laurens, Melodie Chen-Glasser and **James D. McMillan**, National Renewable Energy Laboratory, Golden, CO, USA

39th Symposium on Biotechnology for Fuels and Chemicals

Algae remain an attractive target for bioenergy applications over the longer term because of their high photosynthetic efficiency. However, near-term prospects for primary algae-based energy/fuels production remain poor due to the cost of cultivating and harvesting algae. While there has been substantial technical progress on algae-based bioenergy production in recent years, persisting low fossil fuel prices are causing the algae-based industry to shift its focus from biofuels/bioenergy products to higher value (non-fuel/energy) products that can be profitable today. Ultimately, the vision is that algal biomass-based co-products will provide the additional revenue needed to reduce the net cost of producing algal-based biofuels. As such, a biorefinery approach that enables multiple high-value products to be produced will be essential to fully valorize algal biomass and enable bioenergy coproduction. To accelerate implementation of algae-based production, progress in minimizing the energy, water, nutrients and land use footprints of integrated algal-based operations needs to be a primary objective of future larger scale demonstrations. This presentation will summarize findings of a recently completed IEA Bioenergy report on the status and prospects for using microalgae and macroalgae as feedstocks for biofuels and bioenergy production; the report is available at <u>www.ieabioenergy.com</u>. The scope of the areas covered includes international activities advancing bioenergy and non-energy bio-products from algae, bioenergy from macroalgae (both cast and cultivated seaweeds), distinct biochemical and thermochemical conversion pathways, biorefining opportunities, as well as process economics and sustainability issues.