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Abstract:  
 
Predictive modelling to map subtidal communities is an alternative to “traditional” methods, such as 
direct sampling, remote sensing and acoustic survey, which are neither time- nor cost-effective for vast 
expanses. The principle of this modelling is the use of a combination of environmental key parameters 
to produce rules to understand species distribution and hence generate predictive maps. This study 
focuses on subtidal kelp forests (KF) on the coast of Brittany, France. The most significant key 
parameters to predict KF frequency are (1) the nature of the substrate, (2) depth, (3) water 
transparency, (4) water surface temperature and (5) hydrodynamics associated with the flexibility of 
algae in a flow. All these parameters are integrated in a spatial model, built using a Geographical 
Information System. This model results in a KF frequency map, where sites with optimum key 
parameters show a deeper limit of disappearance. After validation, the model is used in the context of 
Climate Change to estimate the effect of environmental variation on this depth limit of KF. Thus, the 
effects of both an increase in water temperature and a decrease in its transparency could lead to the 
complete disappearance of KF. 

http://dx.doi.org/10.1007/s00227-010-1426-4
http://www.springerlink.com/
http://archimer.ifremer.fr/
mailto:vona.meleder@univ-nantes.fr
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INTRODUCTION 38 

Traditionally, marine ecologists have used the direct sampling method to characterise 39 

shallow water and intertidal marine habitats. However, this method is neither time- 40 

nor cost effective for expanses from a regional to a global scale. Remote sensing 41 

tools, such as aerial photography, airborne and satellite imagery, are appropriate for 42 

surveying and classifying marine habitats in the intertidal zone (Guillaumont et al. 43 

1993; Bajjouk et al. 1996; Guillaumont et al. 1997; Méléder et al. 2003; Combe et al. 44 

2005). However, these tools rapidly reach their limits for subtidal surveys because of 45 

the absorption of visible radiations by water. Both single-beam and sidescan acoustic 46 

methods are suitable to overcome this limitation and to achieve remote sensing of 47 

depth and benthic communities in subtidal waters (McRea et al. 1999; Piazzi et al. 48 

2000; Brown et al. 2002; Freitas et al. 2003; Riegl et al. 2005; Freitas et al. 2006). 49 

But as these techniques involve either profiles or narrow swaths, their efficiency of 50 

coverage is quite limited and addressing areas from regional to global scale leads to 51 

dramatically increased costs. Acoustic methods also have limited discriminatory 52 

ability between macrophyte types and densities although recent works show their 53 

capability to coarse estimate macrophytic biomass (Riegl et al. 2005). So, for spatial 54 

assessment of seabed habitats, prediction using models seems to be the best 55 

approach. Depending of the objective of the survey and the availability of data to 56 

build models, assessment could include the occurrence, the biomass, the density 57 

and/or the diversity of habitats. Although these tools cannot replace direct detection 58 

or observation of benthic surfaces, they can provide a more global vision of some 59 

seabed habitats that is compatible with ecosystem management. The development of 60 

predictive models will contribute to better understanding of the factors and processes 61 

which structure the distribution and composition of marine habitats and their 62 
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associated biological communities at a coarser yet more integrated scale than that 63 

achieved using direct methods. Once developed and validated, these models are 64 

time- and cost-beneficial tools and enable the coverage of areas where no habitat 65 

information is available. Besides, they offer a way to apply scenarios to simulate 66 

effects of environmental changes on habitats distribution, particularly in the 67 

contemporary context of the Climate Change (IPCC 2001). 68 

Some combinations of environmental parameters, such as the so-called the  ‘marine 69 

landscape’, are assumed to control the distribution of species and habitat types (Roff 70 

and Taylor 2000). Basically, the key parameters used can be grouped under three 71 

themes (Stevens and Connolly 2004), i.e., those concerned with 1/ the morphology of 72 

the bottom and the nature of the substrate (depth, sediment type, sediment 73 

constituents), 2/ the nature of the water body overlying the substrate (temperature, 74 

pH, salinity, turbidity, nutrients) and 3/ the dynamics of the local environment or water 75 

mass (exposure to waves, current velocity). Since the approach proposed by Roff & 76 

Taylor in 2000 to predict the distribution of species and habitat types using ‘marine 77 

landscapes’, there have been a few examples of marine habitat classification in a 78 

spatial context based on physical factors (Zacharias et al. 1999; Kelly et al. 2001; 79 

Zacharias and Roff 2001; Brinkman et al. 2002; Stevens and Connolly 2004; Greve 80 

and Krause-Jensen 2005; De Oliveira et al. 2006). Applied to a marine context, these 81 

methodologies are expected to produce rules to understand species distribution 82 

according to environmental parameters and hence, predictive maps. 83 

The aim of this study, part of a modelling work package of the MESH project 84 

(Mapping European Seabed Habitats), an Interreg IIIB North-West Europe funded 85 

initiative, is to propose a predictive model of kelp forest (hereafter called KF) 86 
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frequency, i.e., the percentage of their presence along the coast of Brittany, France. 87 

Indeed, seaweeds are an important component of coastal primary production. With a  88 

primary production ranging from 400 to 1900 g C.m-2.y-1 (Sivertsen 1997), KF can be 89 

compared to the most productive terrestrial ecosystems (Hurd 2000). Characterised 90 

by densities of more than 3 plants.m-2 and made up of various seaweed species 91 

belonging to the Laminariales order, essentially Laminaria digitata and Laminaria 92 

hyperborean, KF are often the dominant producers in nearshore ecosystems, 93 

supplying higher trophic levels via herbivory or the detrital food chain (Hurd 2000 and 94 

references within). KF also provide an essential habitat and food for hundreds of 95 

marine invertebrates and fish species living in temperate nearshore waters 96 

(Norderhaug et al. 2002 and references within). However, they also react to changes 97 

in environmental changes and/or quality (Dayton et al. 1992; Ferrat et al. 2003). 98 

Finally, KF are used in many maritime countries for industrial applications and as a 99 

fertiliser. This means that there is a steady demand for raw material from the 100 

seaweed industry, adding economic importance to their ecological one. 101 

In this current study, KF frequency is predicted as a function of the depth and the 102 

chosen methodology for the prediction is the stepwise multiple regression process 103 

with a backward selection of environmental variables: water transparency, 104 

temperature and water motion. The software used to build and validate the model 105 

and to display the resulting map is a Geographical Information System (GIS), ArcGIS 106 

9.0. After validation, model is used in the context of Climate Change to estimate the 107 

effect of environmental variation on KF distribution. 108 

 109 

 110 

 111 
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MATERIALS AND METHODS 112 

Environmental variables 113 

Nature of substrate – As KF are mainly found on rocky substrata, the prediction of 114 

their occurrence was limited to this kind of substrate. Thus, maps of rock in shapefile 115 

format were used as masks to force the model in the GIS software, namely digital  116 

sediment maps (SHOM 1994-2005) with a resolution of 1:50,000 and where not 117 

available, a coarser 1:500,000 map (Vaslet et al. 1979). 118 

Bathymetry – The bathymetry map was a raster dataset from the French Channel 119 

coast to the Gironde estuary, with a resolution of 150 m. This raster was generated 120 

using various types of digital and map depth data that were interpolated by kriging, a 121 

geostatistical method. Bathymetry was expressed in metres with respect to the LAT 122 

(lowest astronomical tide level). However, this depth did not correspond to the real 123 

water column height, since LAT levels are rarely reached. Therefore, depth values 124 

were locally corrected by the annual mean tide level, leading to a new raster dataset 125 

of water column height to be used as an input for the predictive model. For the sake 126 

of simplicity, this water height will be called “depth” in the paper.  127 

Another bathymetric derivative was also calculated, the BPI (Bathymetric Position 128 

Index, Lundblad et al. 2004). This index enabled the topography to be estimated 129 

(crest / depression / flat or slope) by measuring where a given depth cell was located 130 

with regard to the overall landscape. In the present case the mean depth of the 131 

surrounding cells was computed using a 4 cell radius annulus. The cells in the 132 

resulting raster dataset were assigned values within a range of positive and negative 133 

numbers. A positive BPI indicated a cell on a crest, whereas a negative index was 134 

found where a depression occurred. Flats areas or areas with a constant slope 135 

produced index values near zero (Lundblad et al. 2004). 136 
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Water transparency – In coastal waters, light is very often a key limiting factor for the 137 

growth of photosynthetic organisms such as the laminarial algae constituting KF, and 138 

the light attenuation coefficient in the euphotic layer is a major parameter used in 139 

ecological modelling. Thus, the attenuation coefficient of the photosynthetically 140 

available radiation (PAR domain [400 – 700 nm]), KPAR enabled the light attenuation 141 

throughout the water column to be modelled. This coefficient, derived from the water 142 

optically active components related to chlorophyll, suspended particulate matter and 143 

dissolved organic matter could be used as a water turbidity proxy. Hence, a high 144 

attenuation coefficient illustrates a turbid water column. In this study, KPAR was 145 

derived from SeaWiFS (Sea Wide Field Sensor) satellite reflectance,  combining 146 

chlorophyll and suspended matter optical properties (Gohin et al. 2005). 52 weekly 147 

mean images of KPAR were obtained from SeaWiFS data averaged over the 1998-148 

2004 period, with a resolution of 1,100 m. 149 

From this KPAR the fraction of light reaching the bottom (Fr) was estimated for a given 150 

depth h by: 151 

100)(expFr PARK h ×= ×  (%)         (1) 152 

When this percentage is equal to 1%, it defines the lower limit of the photic zone. 153 

Below this threshold, the remaining energy is not efficient for photosynthesis. 154 

Temperature – This factor was estimated by Sea Surface Temperature (SST, in °C) 155 

derived from AVHRR (Advanced Very High Resolution Radiometer) data with a 156 

resolution of 1,100 m. SST maps were provided by the SAF (Satellite Application 157 

Facility) “Ocean and Sea Ice” of EUMETSTAT/Meteo-France, Lannion (France) and 158 

52 weekly mean images were available from AVHRR reflectance averaged over the 159 

last two decades.  160 
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Water motion – This variable was expressed as the tidal current maximum velocity 161 

(Vmax in m.s-1) resulting from simulations for a mean spring tide run by the 162 

hydrodynamic model MARS 3D developed at Ifremer. The current resolution of this 163 

model is 300 m. 164 

 165 

Biological variables: KF ground-truthing  166 

Acoustic surveys of laminarial algae belonging to KF were carried out at 10 locations 167 

along the Coast of Brittany in three periods: spring 2005 for the Aber Wrac’h (AW) 168 

site, spring 2006 for the Groix (Gr), Molène (Mo), Méloine (Me) and Triagoz (Tr) sites 169 

and spring 2007 for the Audierne (Au), Bréhat Island (Br), Glénan (Gl), Heaux (He) 170 

and Moelan (Ml) sites (Figure 1). All sites were chosen for the presence of rocky 171 

substrata and the accessibility to survey boat. Prospected zone for each site was 172 

delimited using rock and bathymetry maps to identify flat rocky area located at a 173 

bathymetry varying from 10 to 30 m, where KF were more susceptible to be found. 174 

On field, a small survey boat equipped with a 120 kHz Simrad EK60 echo-sounder 175 

was used. The narrow 7° width beams were used for e mitting and receiving. The 176 

acquisition parameters of the transducer, adjusted to the minimum pulse duration (64 177 

µs) and sampling interval (pulse frequency: 16 µs), made it possible to obtain the 178 

maximum resolution on both vertical and horizontal axes. All recordings were 179 

performed at a constant speed of about 5 knots corresponding to a distance between 180 

each pulse (or ping) varying from 5 to 20 cm. The total track length for each site was 181 

about 20 kilometres. Acoustic transects were simultaneously georeferenced with a 182 

GPS equipped with the EGNOS system giving position accuracy of better than three 183 

metres. Both acoustic and position data were stored on a laptop PC.  184 
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Data processing - Raw acoustic data were post-processed using MOVIES+ echo 185 

integration software (Marchalot et al. 2003) which can be used to evaluate the 186 

backscattered energy in different depth layers defined by the user above or below the 187 

seafloor (Figure 2, line A). The first layer was defined at 0.2 m above the sea bottom 188 

to detected KF (Figure 2, line B) and the second from 1 to 1.5 m under the sea 189 

bottom to evaluate the nature of the seafloor (not shown in Figure 2). The top limit of 190 

the integrated layer was set at 2.2 m above the bottom (line C).  On each ESU 191 

(Elementary Sampling Unit, Figure 2), defined by a 20-ping width and a spatial 192 

resolution varying from 1 to 4 m (depending on the speed of the boat), the software 193 

gives four parameters for each layer: Ni (number of echo-integrated samples), Nt 194 

(total number of samples), sA (nautical area scattering coefficient in the layer in 195 

m²/mille²) and sV (volume reverberation index of the layer in dB). The additional 196 

parameter BotErr (for Bottom Error), provided by the software when a large variation 197 

is detected in the echo-integrated energy, may indicate that the bottom itself has 198 

accidentally been integrated in the first bottom layer (i.e., the one nearest the sea 199 

bed, see Figure 2, line A). Once the raw acoustic data have been processed using 200 

MOVIES+, a specific algorithm implemented with the Excel software based on 201 

thresholds and ratio values of Ni, Nt, sA and BotErr automatically classifies KF 202 

presence or absence (binary) and the type of substrate (rock or sand). The algorithm 203 

was validated using direct observations by scuba-divers on the AW site during spring 204 

2005 and in the Gr, Mo, Me and Tr sites during the spring 2006. 205 

Thus, the resulting data for each ESU were the coordinates of the point (lat, long), 206 

the KF presence or absence, the nature of the substratum, and the depth (in metres). 207 

The latter, initially measured with reference to LAT, was corrected by adding the 208 

annual mean tide level.  209 
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The echo-integration results were used to build KF distribution laws, expressed for 210 

each site in “percentage of presence” or “frequency” (%) as a function of depth (m). 211 

KF frequency, [H]F , was obtained for depths between 10 and 30 m by: 212 

1000.25H

0.25H

0.25H

0.25H ×=
∑

∑
+<

−≥

+<

−≥
h

h
H

h

h
H

[H]

R

KF
F         (2) 213 

where H was the class of depth split into 0.5 m intervals and h the depth from echo-214 

integration falling into this class, KFH the total amount of ESU corresponding to KF for 215 

the given class H and RH the total amount of ESU corresponding to rock substratum 216 

for the same class H.  217 

These frequency laws were fitted using piecewise regressions (Toms and 218 

Lesperance 2003) from SigmaPlot 10.0 software following the process: 219 

h1 = min(h) 220 

 h3 = max(h) 221 

 segment1(h) = (y1 × (H1 – h) + y2 × (h – H1)) / (H1 – h1)   (3) 222 

 segment2(h) = (y2 × (H2 – h) + y3 × (h – H1)) / (H2 – H1)   (4) 223 

 segment3(h) = (y3 × (h3 – h) + y4 × (h – H2)) / (h3 – H2)   (5) 224 

 f = if (h ≤ H1 ; segment1(h) ; if (h ≤ H2 ; segment2(h) ; segment3(h)) 225 

 226 

The fit was sought for the two breakpoints H1 and H2 and Slope2, the slope between 227 

them (Figure 3). H1 and H2 were the depths corresponding respectively to the 228 

beginning of the frequency decrease and to the disappearance of KF, (which is also 229 

the upper limit of KF characterised by a density of less than 3 plants.m-2). These 230 

three parameters were taken as the biological variables to be predicted using 231 
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environmental ones. Each fit was expressed with its confidence and prediction 232 

intervals at 95 % (Figure 3). 233 

 234 

Model building 235 

The cell values of the environmental variable raster dataset (BPI, KPAR, SST and 236 

Vmax) intersected by acoustically surveyed transects were extracted and averaged 237 

on a site basis. The values from five sites (AW, Mo, Me, Tr and Gr) called “training 238 

sites” were used to build the predictive model of KF frequency, whereas the values 239 

from the other five (Au, Br, Gl, He and Ml called “validation sites”) were used to 240 

validate it.  241 

The methodology chosen for the prediction was the stepwise multiple regression with 242 

a backward selection of variables. Associations of the BPI and/or KPAR and/or SST 243 

and/or Vmax were used to predict H1, H2 and Slope2, and then to estimate KF 244 

frequency for depths from H1 to H2: 245 

 H1 = aBPI + bSST + cKPAR + dVmaxβ      (6) 246 

 H2 = a’BPI + b’SST + c’KPAR + d’Vmaxβ      (7) 247 

 Slope2 = a”BPI + b”SST + c”KPAR + d”Vmaxβ     (8) 248 

 Predicted KF frequency (%) = Slope2 × (h – H2)  for H1 < h < H2 (9) 249 

where, a to c” were the regression coefficients (might be = 0), and the β exponent 250 

expressed the flexibility of algae in a flow, typically around 1.5 (Denny and Gaylord 251 

2002). 2 and 1.5 were tested as values for β. 252 

 253 

The prediction of KF frequency for a depth less than H1 is performed using the same 254 

process: 255 

 Predicted KF frequency (%) = wBPI + xSST + yKPAR + zVmaxβ  (10) 256 
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for h < H1 257 

where w to z are the regression coefficients (might be = 0) and β =1.5 or 2. 258 

 259 

Stepwise regressions were run using the statistical software R.2.5.1. However, the 260 

use in regression process of the 52 weekly values extracted from KPAR and SST 261 

images was not relevant. For this reason, water transparency and surface 262 

temperature information were synthesised using both the annual average (namely 263 

KPARyear and SSTyear) and the average during the growth period from week 14 to 264 

week 25 (namely KPARgrowth and SSTgrowth). The minimum and maximum values 265 

during the year (KPARmin, SSTmin, KPARmax and SSTmax) were also integrated in 266 

the stepwise regression process. Then environmental variables with a non-significant 267 

partial F (p ≤  0.1) were removed step by step. However, varying significant multiple 268 

or simple regressions were obtained to predict the same biological variables. All 269 

these regressions were used to build varying predictive models, and the one showing 270 

the smallest residual differences between predictions and observations was kept to 271 

produce the final predictive map. This map was then built by automating the model 272 

work flow with the ‘ModelBuilder’ interface in the ArcGIS 9.0 geoprocessing toolbox. 273 

Moreover, this interface allowed to create the environmental settings for the model, 274 

which controlled geoprocessing output parameters. Raster analysis settings were 275 

used to give the output cell size, defining working scale, the finest resolution among 276 

the various data sources, 150 m, and to apply the rock mask. 277 

 278 

Validation and simulations 279 

KF frequency obtained by echo-sounding from the 5 sites: Au, Br, Gl, He and Mo 280 

(Figure 1) was compared to the prediction at the same location to validate the model. 281 
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It was then used in the context of Climate Change to estimate the effect of 282 

environmental variation on the depth of KF disappearance, H2. Indeed, since 1976, 283 

temperature of the ocean increase by 0.075 °C/decad e, i.e. an increase of around 284 

0.2 °C during the 30 past years (IPCC 2001). For th e northern hemisphere, where 285 

this study sites are located, the increase of temperature is higher with 0.4 °C/decade, 286 

i.e. around 1 °C since 1976 (IPCC 2001). Using the validated model, two scenarii 287 

were tested for temperature increase in accordance to IPCC (2001) results: the 288 

global (0.2 °C) and the northern increase (1 °C). A n intermediate stage (an increase 289 

of 0.5 °C) was used in a third simulation. In the s ame way, three scenarii to estimate 290 

effect of an increase of water transparency on KF distribution were tested. Indeed, 291 

extreme episodic events such as storms, extreme rain events and flooding must a 292 

consequence of the Climate Change (IPCC 2001). These result in strong 293 

hydrodynamics and super river discharges leading to decrease of water transparency 294 

(de Jonge and de Jong 2002; Cardoso et al. 2008). However, no information about 295 

the evolution of the water transparency proxy use in this study, the KPAR, is available. 296 

Steps to simulate increase of KPAR values for the three scenarii were chosen to test 297 

KPAR values included in the range of values used to build the model: 0.01, 0.02 and 298 

0.05. 299 

 300 

RESULTS 301 

Environmental parameters 302 

Gr, He and Br sites were the more turbid locations throughout the year and during 303 

the growth period with the greatest KPARyear and KPARgrowth values (Table 1). For 304 

these three sites, the minimum values (KPARmin) never went below 0.18, whereas 305 

maximum values (KPARmax) reached 0.456 at the Gr site during week 2 (Table 1, 306 
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Figure 4). On the other hand, the western sites Mo and Au were the clearest 307 

locations with lowest KPAR values (Table 1).  308 

Along with this spatial variability along the coast of Brittany, water transparency also 309 

varied over time. Peaks of KPAR, often exceeding 0.25, were detected during the first 310 

seven weeks and the last twelve weeks (Figure 4). These periods corresponded 311 

respectively to winter and autumn, periods of bad weather with rain and storms often 312 

leading to increased amounts of mineral material from either bottom scouring or river 313 

discharge. The maximum KPAR values reported in Table 1 were recorded during 314 

these weeks. Conversely, the minimum KPAR values (KPARmin, Table 1) were 315 

observed during spring/summer between weeks 10 and 40. This period 316 

corresponded to calm weather, although some turbulent and stochastic events 317 

appeared and generated turbidity peaks lasting from one to three weeks but never 318 

resulting in a KPAR above 0.25 (Figure 4). These peaks were essentially observed at 319 

AW, Gr, Br and He sites, whereas the other sites were more stable in terms of water 320 

transparency (Figure 4).  321 

 322 

Surface temperature showed spatial and temporal variability very similar to that of 323 

water transparency. The warmest sites during the year were those located in the 324 

south: Gr, Gl and Ml with respectively 13.6, 13.7 and 13.5° C (Table 1), which also 325 

exhibited growth period temperature values in excess of 12.5° C. The coldest site 326 

was AW with more than 1° C below the annual means o f the southern sites. The 327 

other sites showed equivalent annual SST values, around 13° C (Table 1). 328 

The temporal variability was classic, with high temperatures in summer, and low 329 

temperatures in winter (Figure 5). However the Gr site, although it was one of the 330 

warmest, showed the minimum temperature value (8.7° C), due to a well-known 331 



 15

tongue of cold water occurring near the coast. The other southern sites showed the 332 

highest minimum and maximum temperature values (Table 1, Figure 5).  333 

 334 

Exposure, measured by the maximum tidal current velocity Vmax, showed a 335 

north/south gradient whose maximum velocity was lower than 0.3 m.s-1 for southern 336 

sites, although it reached 1 m.s-1 for the more turbulent northern sites (Table 1). 337 

 338 

Surveying KF with echo-sounding 339 

The parameters described in the Materials and Methods section were calculated for 340 

the echo signals collected over the study areas and the binary classification of KF 341 

(presence/absence) was performed for each site. For illustrate results, only part of 342 

the echogram for the Gl site and the corresponding classification are shown in Figure 343 

6. The acoustic signal from KF is about 1 metre high with quite low backscatter 344 

energy (light grey) above the seafloor (dark grey). There was good correlation 345 

between underwater KF boundaries as indicated by the echogram and the 346 

classification (dark hatches). Sometimes, accidental bottom integration causes 347 

classification of the ESU in BottErr (light hatches). This phenomenon is generally 348 

seen on steeper rocky substrates and is amplified by bad weather conditions. 349 

 350 

KF frequency law 351 

Overall, the sites showed the same significant distribution profile along the depth 352 

(Figure 3, Table 2), except for those of Au, He and Ml, for which some fit parameters 353 

are not significant (Table 2). The profile was divided in two parts. The first, before the 354 

inflexion point H1, corresponded to the variability of frequency around a mean (Figure 355 

3). The slope of this first segment was not significant, and thus, was not predicted by 356 
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the model. Indeed, the frequency for depths less than H1 up to the upper KF limit 357 

were directly predicted using environmental parameters (eq. 10). The second part of 358 

distribution law corresponded to a drop in the frequency along Slope2, between H1, 359 

and H2, the depth at which KF disappeared (eq. 4 to 6). Fits are good, with high 360 

adjusted R² and a probability of less than 0.01 (Table 2). H1 varies from 13.2 m for 361 

the most turbid and coldest site Br, to 20.6 m for the clearest and warmest one, Mo 362 

(Tables 1 and 2). Likewise, Slope2 is higher in turbid (low transparency) and cold 363 

sites, such as Au and Br, than in less turbid and warmer sites such as Me and AW 364 

(Tables 1 and 2). Similarly to H1 and Slope2, H2 varies with the water transparency 365 

and surface temperature from 19.3 m to 27.8 m. However, the relationship between 366 

H2 and water transparency and/or surface temperature is not as clear as that 367 

explaining H1 and Slope2, suggesting the effect of another environmental parameter 368 

to explain explaining KF disappearance, which could be bed stress. 369 

 Once H2 was known, the Fr fraction (eq. 1) for each site was calculated using the 370 

four water transparency parameters KPARyear, KPARgowth, KPARmin and KPARmax 371 

(Table 3). Only KPARgrowth and KPARmin values allowed Fr higher than the 1% 372 

threshold permitting photosynthesis activity. The use of KPARyear and KPARmax 373 

generated Fr values below the 1% level which were inconsistent with algal presence 374 

such as KF or parks. Thus, only KPARgrowth and KPARmin seemed to be relevant and 375 

biologically interpretable abiotic factors to predict H2 and hence KF frequency. 376 

 377 

Predictive modelling 378 

Stepwise regression processes provided four significant models to predict KF 379 

frequency from the five training sites AW, Mo, Me, Tr and Gr, for a depth ranging 380 

from H1 to H2 following the equations (6) to (9). The first model predicted biological 381 
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variables (H1, H2 and Slope2) using SSTmin only (eqs. 11 to 13) and the second one 382 

used KPARmin only (eqs. 14 to 16). The last two significant models were similar to the 383 

first two, but with a better predictive H2 using Vmax1.5 in addition to SSTmin or 384 

KPARmin alone (eqs. 17 and 18). The adjusted R² increased from 0.80 to 0.98 when 385 

Vmax1.5 was associated with SSTmin, and from 0.76 to 0.97 when Vmax1.5 was 386 

associated with KPARmin: 387 

 388 

pred_mod1, 389 

 H1 = - 29.81 + 5.31 ×  SSTmin    R² = 0.88, p ≤ 0.05 (11) 390 

 H2 = - 30.32 + 5.86 ×  SSTmin    R² = 0.80, p ≤ 0.05 (12) 391 

 Slope2= 28.53 – 4.23 ×  SSTmin   R² = 0.79, p ≤ 0.05 (13) 392 

pred_mod2, 393 

 H1 = 40.5 – 121.19 ×  KPARmin    R² = 0.87, p ≤ 0.05 (14) 394 

 H2 = 40.75 – 130.97 ×  KPARmin   R² = 0.76, p ≤ 0.05 (15) 395 

 Slope2= - 25.37 + 84.72 ×  KPARmin   R² = 0.60, p = 0.12 (16) 396 

pred_mod3, 397 

 H1 = eq. (14) 398 

 H2 = 43.53 – 121.12 ×  KPARmin + 2.26 ×Vmax1.5  R² = 0.97, p ≤ 0.05 (17) 399 

 Slope2= eq. (16) 400 

pred_mod4, 401 

 H1 = eq. (11) 402 

 H2 = - 26.86 + 5.33 ×  SSTmin + 2.07 ×Vmax1.5  R² = 0.98, p ≤ 0.05 (18) 403 
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 Slope2= eq. (13) 404 

For each model, the KF frequency was predicted following equation (9). Thus, the 405 

most efficient model was that reducing residuals between observation and prediction 406 

(Figure 7). These residuals showed that models including temperature or water 407 

transparency only (respectively pred_mod1 and pred_mod2) were not able to predict 408 

KF frequency correctly (Figure 7a and 7b). Indeed, SSTmin on its own  (pred_mod1) 409 

predicted KF frequency well only for the Gr and Me sites, whereas this model 410 

overestimated percentages for the sites AW and Mo and underestimated them for Tr  411 

(Figure 7a). On the contrary, KPARmin (pred_mod2, Figure 7b) enabled good 412 

prediction for the latter site as well as for Me, while it overestimated observations for 413 

Mo and underestimated those on AW. The use of water motion, estimating bed 414 

stress using Vmax1.5, was more efficient (Figure 7c and 7d) particularly when it was 415 

associated with water transparency (Figure 7c). Only the observed frequencies from 416 

the Gr site were not well predicted using the model ‘pred_mod3’ but this was due to 417 

incomplete coverage by SeaWiFS data for this site. Therefore, the model using 418 

SSTmin and Vmax1.5 (Figure 7d) was run for part of this site and other locations 419 

where water transparency data were not available. 420 

Models were able thus to predict a decrease in depths H1 and H2 with water clarity, 421 

while an increase in temperature indicated deeper breakpoints. When clearness or 422 

surface temperature of water was constant a drop in the depth limit H2 occurred in a 423 

direct ratio with a power of 1.5 for the velocity. Finally, the model providing the best 424 

prediction of KF frequency for depths between H1 to H2 was pred_mod3, using water 425 

transparency and bed stress, or pred_mod4 when water transparency data were not 426 

available. 427 
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 428 

However, the only significant model to predict KF frequency for a depth less than H1, 429 

following equation (10) was that using topography (BPI) alone: 430 

  Predict % = 52.5 –1.64 ×  BPI R² = 0.75, p ≤ 0.01 (19) 431 

 432 

This regression indicates that KF were observed preferentially in depressions rather 433 

than on crests. But, the attempted validation of this model concluded that using BPI 434 

as a physical parameter can correctly predict KF frequency values around 50% 435 

(Figure 8). Under or above this frequency, BPI alone did not explain occurrences of 436 

KF in well-lit water. 437 

The prediction was stopped at the +1m depth contour, known to be the higher limit of 438 

KF presence. It was not possible to predict this limit at the study scale, as was done 439 

by De Oliveira (2006) who used the percentage of immersion over the year, derived 440 

from the tidal flooding frequency at a given elevation. This limit occurred for KF 441 

between immersion periods ranging from 92 to 97 % whereas maximum KF 442 

coverage occurred at 100 % immersion. The depth contours corresponding to ~ 95 % 443 

and 100 % immersion were too closes (only a few tens of metres), so they were 444 

included in the same pixels of the bathymetry dataset used in our model. Therefore, 445 

estimating and mapping the decrease in KF frequency between these two contours 446 

at our working scale (150 m) was not possible. 447 

Model validation 448 

Validation sites Au, Br, Gl, He and Ml (Figure 1) were used to validate the selected 449 

model providing the better prediction, by looking at the residuals between the KF 450 

frequency obtained by echo-sounding and predicted KF (Figure 9a). The prediction of 451 
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KF frequency between H1 and H2 is satisfactory for Au and Gl sites but not as good 452 

for He, Br and Ml sites, for which some KF frequency predictions overestimated the 453 

observations (Figure 9a). 454 

For depths of less than H1, the model using BPI alone is not too effective (Figure 9b). 455 

Observed frequencies varied from 10 to 64 % for all the sites, whereas predictions 456 

varied from 40 to 55 %. This indicates a limitation of the predictive model using only 457 

BPI for depths less than H1.  458 

In spite of these limits, the model provided good prediction of the boundary of KF 459 

disappearance H2, on validation sites as well as on training sites (Table 4).  460 

 461 

Predictive map 462 

A predictive map is proposed to visualise areas where KF may occur as driven by 463 

environmental parameters (Figure 10). Three examples were taken to illustrate this 464 

map, AW, Br and Gl sites, respectively shown by black, red and blue boxes (Figure 465 

10). AW is one of the sites showing highest hydrodynamism with great Vmax and KPAR 466 

values, whereas Gl is one of the less agitated sites and Br shows an intermediate 467 

stage. 468 

 KF disappear at greater depth when the water column is clear and not too cold. This 469 

is the case for the site AW site (black box, Figure 10).  On this site, KF regularly 470 

reaches the 30 m depth contour. For more turbid and colder sites such as Br, KF only 471 

reaches the 20 m contour (red box, Figure 10). Exposure is also responsible for the 472 

decrease in the KF depth limit. For example, although the GI site is clearer than AW, 473 

KF there do not reach the 30 m contour, or only very locally (blue box, Figure 10). 474 

This is explained by the lower maximum velocity at Gl than at AW (Table 1). 475 

 476 
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Simulation 477 

In the context of Climate Change, the model was used to predict the potential 478 

variation in the KF disappearance depth, H2, with respect to various scenarios. 479 

Simulations were based on an increase in KPARmin of 0.01, 0.02 and 0.05, except for 480 

locations where no turbidity data were available. For the latter, SSTmin was used 481 

with an increase of 0.2, 0.5 and 1° C.  The results  illustrated the antagonism of these 482 

two environmental parameters: an increase in water transparency induced an upward 483 

shift of the KF boundary while temperature was responsible for a downward one 484 

(Table 4). On sites AW, Me, Mo, Tr, Br, Gl and He (where KPARmin was used), H2 485 

decreases of 1.2 m, 1.3 m and 3.6 m were obtained with KPARmin respectively 486 

increasing by 0.01, 0.02 and 0.05 (Table 4). On the other hand, on sites for which 487 

SSTmin was used (Gr, Au and Ml), H2 rose by 1, 2.5 and 5.5 m when SST 488 

respectively increased by 0.2, 0.5 and 1° C (Table 4). 489 

 490 

DISCUSSION 491 

Environmental effect – Antagonism between water transparency and water 492 

temperature. 493 

Water transparency and water temperature are the two main environmental variables 494 

structuring KF frequency and distribution over the coast of Brittany. The results of this 495 

study conclude that the annual minimum value of the light attenuation coefficient by 496 

the water column is the most significant and relevant water transparency proxy for KF 497 

prediction. This minimum value is measured during spring/summer, corresponding to 498 

calm weather and thus to high water transparency because of limited sediment 499 

scouring from the bottom and river discharges. It is also during this period that 500 

maximum photosynthesis activity occurs, and the literature bears out that light 501 
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attenuation by the water column is a key parameter in the structuring of macroalgae 502 

communities, essentially during spring/summer (Belsher 1986; Markager and Sand-503 

Jensen 1992) because of this maximum photosynthesis activity. This period of the 504 

year is favourable to KF growth all the more so nutrients are not limiting factors in 505 

Brittany costal water (Ménesguen et al. 1997). This also explains why the value of 506 

the light attenuation coefficient measured during the few weeks defining the growth 507 

period is another relevant water transparency proxy for KF prediction. This is 508 

supported by calculating the percentage of incident light lightening the limit of KF 509 

disappearance. According to Markager and Send-Jensen (1992) and references 510 

within showing the percentage of incidental light ranging from 0.7 to 1.9 % reaching 511 

the depth limit for Laminaria hyperborea, both minimum and growth values of KPAR 512 

are responsible for a percentage which is often higher than the 1% threshold 513 

permitting photosynthesis. Then, below the KF depth limit, the remaining light energy 514 

could be used by other photoautotrophic communities or organisms. KF are replaced 515 

by less dense communities, such as laminarial parks characterised by a density of 516 

less than 3 plants.m-2, and shade-loving species belonging to the Rhodophyceae 517 

class like Solieria chordalis. 518 

  519 

Using water transparency to predict the KF depth limit is also an interesting approach 520 

in the context of Climate Change. Climate changes, including higher temperatures, 521 

precipitation and wind speeds as well as storm events, may increase the risk of 522 

abrupt and non-linear changes in many ecosystems, which would affect their 523 

composition, function, biodiversity and productivity (IPCC 2001). Episodic events 524 

such as storms, extreme rain events and flooding resulting in strong hydrodynamics 525 

and super river discharges can lead to increased amounts of suspended mineral 526 
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matter in the water column and on the bottom substrate (de Jonge and de Jong 527 

2002; Cardoso et al. 2008). This turbidity increase is reinforced by anthropogenic 528 

activities responsible for multiple stressors including pollutants, excess nutrients, 529 

altered habitats and hydrological regimes as well as floods and droughts (Cardoso et 530 

al. 2008). The response of KF to this drop in water transparency is bound to be an 531 

upward shift of their lower limit. 532 

Nevertheless, the KF depth limit shift due to natural or anthropogenic turbidity 533 

increases could be counterbalanced by a rise in water temperature. Indeed, this 534 

study concludes that KF take advantage of temperature increases, with communities 535 

spreading towards deeper levels. The use of water temperature for prediction is more 536 

relevant when values are measured outside of the summer period. During these 537 

warm months, water column stratification can occur and therefore surface 538 

temperature is not a good proxy for bottom temperature. The rest of the year, when 539 

the water column is fairly homogenous and the bottom water is slightly cooler than at 540 

the surface, surface temperature is a good proxy for the entire column. Next, one of 541 

the structuring factors of Brittany KF communities is a minimum value of surface 542 

temperature measured during winter, varying from 8.3 to 9.6 °C. These low 543 

temperatures are without consequences for Laminaria digitata, the major species 544 

providing high KF levels (approximately from the LAT down to a depth of 5 m), as 545 

their broad ecological optimum varies from 3 to 15 °C (Belsher 1986). On the other 546 

hand, L. hyperborea, the major species making up the lower-lying part of KF 547 

(approximately from LAT to the depth limit) is more sensitive to cold temperature. Its 548 

optimum is narrower than that of L. digitata, varying from 10 to 17 °C and young 549 

sporophyte growth is altered at temperatures less than 10 °C (Belsher 1986). This 550 

explains why a rise in colder temperatures favours the spreading of these 551 
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communities towards deeper levels. Using temperature measured during the cold 552 

period for predictions is also an interesting approach in the case of Climate Change, 553 

because water warming is mainly observed during this period (Koutsikopoulos et al. 554 

1998). Nevertheless, although an increase in the coldest temperatures, as a 555 

consequence of Climate Change, seems to favour a downward KF shift, this 556 

phenomenon could be moderated or even reversed by the decrease in water 557 

transparency during calm periods. These two parameters have an antagonistic effect 558 

on KF structure. 559 

Moreover, although the current model was not able to predict an effect on KF upper 560 

limits, the temperature increase observed over the past decades (IPCC 2001) could 561 

have an harmful effect on them. Indeed, L. digitata which occupies the upper part of 562 

KF, shows an optimum until 15°C, and a lethal tempe rature value around 23 - 24 °C 563 

(Belsher 1986). The latter values have not been observed along the coast of Brittany 564 

using the AVHRR scale, but, if surface temperatures kept increasing (as could be the 565 

case locally), lethal values would soon be reached. This warming effect would lead to 566 

KF reaching deeper and cooler water. 567 

Then, in the worse Climate Change scenario, showing a rapid, high rise in 568 

temperature with an increase in the number and intensity of extreme events (IPCC, 569 

2001), the consequences will be an upward shift of the depth limit and a downward 570 

one of the upper KF boundary, leading to a reduction in their width. If worse comes to 571 

worst, the effects of both an increase in water temperature and a decrease in 572 

transparency could lead to the complete disappearance of KF. This dramatic 573 

consequence would lower or eliminate the habitat surface area and alter the 574 

diversity, abundance and functioning of the associated biological communities. This 575 

depletion of the ecosystem will also have economic consequences because of the 576 
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decrease of this resource already threatened by over-cropping (MEDD 2005). All 577 

these consequences will be irremediable if no global resolution like that 578 

recommended by the Intergovernmental Panel on Climate Change (IPCC, 579 

http://www.ipcc.ch) is adopted in the next few years.  580 

 581 

Environment effect – Bed stress issue 582 

Although the main studies assessing macro-algae with regard to exposure involve 583 

wave swell effects and the intertidal area (Denny 1995; Hurd 2000; Denny and 584 

Gaylord 2002; Buck and Buchholz 2005; Boller and Carrington 2006), this study 585 

considered exposure due to tidal currents. Numerous authors have shown the effect 586 

of orbital wave velocity, responsible for a drag force tending to push an object 587 

downstream, which depends on the water density and velocity exponent of drag, β 588 

(Denny 1995). This exponent is derived from Vogel’s E (Vogel 1994), and measures 589 

the relationship between velocity and drag. It determines how force increases with an 590 

increase in water velocity. For bluff objects subjected to drag, β is approximately 2 591 

(Denny 1995; Denny and Gaylord 2002) and numerous authors take this value for all 592 

objects, whether flexible or not (Buck and Buchholz 2005; Boller and Carrington 593 

2006; Pope et al. 2006). However, Vogel (1994) and Denny (1995) suggest that an 594 

exponent value lesser than 2 be used for streamlined or flexible objects. Indeed, in a 595 

unidirectional flow, algal fronds bend in response to the force applied, and the plant 596 

reorients and rearranges itself passively in a way resulting in overall streamlining 597 

(Denny 1995 and references within). Consequently, the β for exposed algae in flow is 598 

universally less than 2 and typically around 1.5 (Denny 1995), with the velocity-599 

dependant character of shape being incorporated in this exponent. In this study, 600 

because of the lack of swell data for the entire survey area at an appropriate scale, 601 
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the effect of tidal current velocity was tested as a proxy for global water motion. The 602 

results confirm Denny’s suggestion: the value 1.5 for velocity exponent of drag is 603 

more significant than the value 2, although water velocity does not have the same 604 

source (swell vs. tide). The effect of a velocity increase is positive for KF: for sites 605 

with the same water transparency conditions, a velocity greater than 0.8 m.s-1 606 

induces a downward shift of KF depth limit. This could be explained by a regular 607 

cleaning effect of thalli in wild sites, making them more receptive to 608 

photosynthetically available radiation than in sheltered sites where thalli are often 609 

covered with a thin layer of particles. On the other hand, and although this has not 610 

been observed on the scale and  the sites of this study, too high a velocity is not 611 

beneficial for KF, which could be dislodged or destroyed, as shown in situ or 612 

experimentally for a number of macroalgae species (Gaylord et al. 2003; Buck and 613 

Buchholz 2005; Boller and Carrington 2006). Indeed, the shear stress imposed on a 614 

structure by water velocity of 2 m.s-1 is roughly equivalent to that exerted by wind of 615 

130 mils.h-1 (Denny and Gaylord 2002).  616 

Another proxy for exposure is the topography. This environmental variable is the only 617 

one explaining KF structures when water temperature and transparency are not 618 

limiting factors, that is to say in shallow depths. KF are observed more often, on a 619 

working scale, in depressions rather than on crests. This could be explained by the 620 

fact that crests are too exposed to the swell and tidal currents and therefore KF 621 

would be overly subjected to high drag forces. These forces are lower in depressions 622 

where KF are more sheltered. This explanation must be advanced with caution, 623 

because the expected result involving the topography was a greater occurrence of 624 

KF on crests rather than depressions (S. Derrien, com.pers.). Indeed, global 625 

topography as used in this study is not efficient enough to predict KF variability 626 
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correctly in shallow water which leads to limited prediction between LAT and H1. The 627 

BPI computed on a finer scale than the one used here at a 150m resolution, was 628 

expected to be a more reliable variable to explain KF distribution at shallower depths. 629 

The availability of proper high resolution depth data over the entire extent of the 630 

coast of Brittany remains a major issue. This leads us to data quality issues.  631 

 632 

Data quality – limitations and scale problem 633 

The digital echo sounding system successfully characterised KF in the surveyed 634 

areas and again demonstrated its ability to characterise and map aquatic vegetation, 635 

as shown and validated in previous studies (McRea et al. 1999; Piazzi et al. 2000; 636 

Brown et al. 2002; Freitas et al. 2003; Riegl et al. 2005; Freitas et al. 2006). 637 

Nevertheless, the acoustic detection showed some limitations. The first one is the 638 

binary classification of substratum: rock or not. Since the survey was conducted with 639 

quite a small vessel, the results are sensitive to weather conditions and it is 640 

recommended that surveys be conducted under calm weather conditions (without 641 

swell and wind). Typical problems include: false KF detection, inaccuracy in the 642 

evaluation of the instantaneous depth and number of Bottom Errors increasing with 643 

wave height, leading to a degraded acoustic dataset. Research is still under way and 644 

better results are expected with the improvement of the clustering algorithm, 645 

particularly on some critical points: 646 

- A decrease in the number of Bottom Errors. This would reduce the number of 647 

misdetection of KF, especially on rocky substrata. 648 

- A better submerged aquatic vegetation classification. For this study, transects 649 

were mainly assessed in pure KF areas, but in some locations (particularly in 650 

very shallow waters), different submerged aquatic vegetation species could be 651 
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present (Zostera marina on the AW site, for example) and influence the 652 

classifying procedure. Better knowledge of the different species spectral 653 

signatures and taking them into account in the algorithm would reduce KF 654 

false detection.  655 

 656 

Another type of input data required with the highest possible quality is the substratum 657 

layer. KF are predicted only where a rocky substrate is present, by way of a mask of 658 

the rocky area. At the working scale, i.e., pixels of 150 m covering the entire coast of 659 

Brittany, these prediction errors are without consequences, since the obtained map 660 

provides the prediction of the distribution and the inter-site variation of KF 661 

frequencies at a global scale. However, if this model was adapted to finer scales in 662 

order to predict local distributions and intra-site variations of KF, the current scale of 663 

the substratum layer (not better than 1:500,000) would not be efficient and would 664 

have to be refined. High resolution Lidar data, for example, could overcome this 665 

limitation at a local scale. The ability of Lidar data to finely characterise seabed 666 

substratum types was tested in recent studies (Rosso et al. 2006; Méléder et al. 2007). 667 

Its high vertical and horizontal accuracy make it suitable to map bottom roughness and 668 

topography in great detail (although at a high cost!).  669 

Obviously, a good balance should be sought in scale homogeneity between source 670 

data. For example, distribution laws as a function of depth used for model calibration 671 

and validation were established using field bathymetry data from echo soundings, 672 

whereas the model input raster dataset used for prediction was generated from 673 

various sources at various resolutions (a mix of Lidar, digital soundings and map 674 

soundings). Depth values from these two sources (map vs. field) exhibit 675 

discrepancies leading to misprediction. For example, KF could be predicted on the 676 
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map for an area where field depths were too great to be photosynthetically efficient or 677 

conversely, some map areas where no KF were predicted corresponded to small 678 

field depths allowing KF growth.  679 

At the end of day, satellite data from SeaWiFS and AVHRR used are in accordance 680 

with the current working scale for prediction at regional scale. However, similarly to 681 

the substratum and bathymetry issues, image resolution limits the use of the model 682 

for prediction at a local scale. MERIS, an ocean colour sensor aboard the Envisat 683 

satellite, with a pixel resolution of 300 m, will also allow progress towards finer 684 

scales. 685 

While progress is expected from regional to local levels, additional parameters may 686 

have to be introduced in the model, as they may have an effect on KF at local scale, 687 

and this would require new investigations. For example, the effect of faunal 688 

abundance consuming primary producers or the swell effect through drag forces 689 

and/or abrasion of rocky area by sand, fine topography, must be tested.  690 

 691 

CONCLUSION 692 

The proposed model enabled the prediction of KF frequency over time and space as 693 

a function of water transparency and exposure, at a global scale that is effective in 694 

the context of Climate Change. Its main limits were: a) predictions in shallow water 695 

where the bathymetry at the working scale was not fine enough and b) the mostly 696 

coarse scale of source data which did not allow local effects to be assessed. These 697 

two limits could be overcome with an adaptation of the model, including refinement of 698 

the working source data and the addition of new key parameters influencing 699 

communities at local scales. Nevertheless, the current model is a good decisional 700 

tool at a global scale, as in the context of Climate Change, allowing us to predict  701 
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changes in the KF depth limit which could be used as an indicator of the health of 702 

these communities and those associated with them.  703 

 704 

 705 

 706 

 707 

 708 

 709 
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Figure legend 840 

 841 

Figure 1. Location of the 10 sites. Black star: sites used to build the model; white 842 

star: sites used to validate it. 843 

 844 

Figure 2. Echo-integration by depth layers in dense kelp forest (KF) on a selected 845 

part of the acoustic transect. A: bottom line – Seafloor; B: offset line – down limit of 846 

the Kelp forest integrated layer (0.2 meters above bottom); C: Top limit of the 847 

integrated layer (2.2 meters above bottom). The vertical lines delimit each ESU (20 848 

ping width).  849 

 850 

Figure 3. Kelp forest frequency vs. depth. Example from the site Molène, Mo (cf. 851 

Figure 1). Observations (�) are obtained from echo-sounding and are fitted using 852 

piecewise regression (bold line), fixing the two breakpoints, H1 and H2, and the slope 853 

between these points, Slope2. Fit is expressed with its prediction (fine line) and 854 

confidence (dashed line) intervals at 95 %. 855 

 856 

Figure 4. Weekly water transparency, expressed in KPAR, derived from SeaWiFS data 857 

averaged over the 1998-2004 period. a/ Sites used for model building; b/ Sites used 858 

for model validation. 859 

 860 

Figure 5. Weekly temperature, expressed in SST, derived from AVHRR data 861 

averaged over the two past decades. a/ Sites used for model building; b/ Sites used 862 

for model validation. 863 

 864 
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Figure 6. Example of an echogram along a selected acoustic transect (from Gl site, 865 

cf. Figure 1). The results of the cluster analysis classification procedure of KF 866 

presence (LAMINAIRE) or absence (empty box) are presented in table above 867 

echogram with the corresponding bathymetry (m). For BOTT-ERR definition, see 868 

Materials and Methods section. 869 

 870 

Figure 7. KF frequency observed vs. predicted with the four significant models for 871 

depth ranging from H1 to H2 at the five sites used to build model: AW, Mo, Me, Tr 872 

and Gr. a/ pred_mod1: model using SSTmin only (eqs. 11 to 13), b/ pred_mod2: 873 

model using KPARmin (eqs. 14 to 16), c/ pred_mod3: model using KPARmin and 874 

Vmax1.5 (eqs. 14, 16 and 17), d/ pred_mod4: model using SSTmin and Vmax1.5 (eqs. 875 

11, 13 and 18). Dark lines illustrate the relationship observation = prediction. 876 

 877 

Figure 8. KF frequency observed vs. predicted using BPI (eq. 9), for depth less than 878 

H1 at the five sites used to build model: AW, Mo, Me, Tr and Gr. Dark lines illustrate 879 

the relationship observation = prediction. 880 

 881 

Figure 9. Model validation. KF frequency observed vs. predicted at the five sites 882 

used to valid model: Au, Br, Gl, He, Ml. a/ prediction for depth ranging from H1 to H2 883 

using KPARmin and Vmax1.5 (pred_mod3; eqs. 14, 16 and 17), or SSTmin and 884 

Vmax1.5 (pred_mod4; eqs. 11, 13 and 18) when no turbidity data are available; b/ 885 

prediction for depth less than H1 using BPI (eq. 19). 886 

 887 



 36

Figure 10. Predictive map of KF presence percentage. Three zooms are shown to 888 

illustrate results: AW, Br and Gl, respectively in black, red and blue boxes. 889 

 890 

 891 

 892 

 893 

 894 

 895 
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Table 1. Environmental parameters used in stepwise regression processes. Training sites are underlined, the others are 

validation sites. 

 KPARyear KPARgrowth KPARmin KPARmax SSTyear SSTgrowth SSTmin SSTmax Vmax 

AW 0.201 0.190 0.175 0.261 12.4 11.9 9.4 15.1 1.12 

Gr 0.265 0.194 0.202 0.456 13.6 12.9 8.7 18.7 0.27 

Me 0.215 0.191 0.183 0.268 12.7 11.6 9.1 16.4 0.89 

Mo 0.197 0.173 0.160 0.274 12.8 12.1 9.6 16.1 0.27 

Tr 0.202 0.176 0.176 0.281 12.7 11.5 9.0 16.5 0.95 

Au 0.205 0.171 0.164 0.321 13.1 12.7 8.9 18.5 0.44 

Br 0.220 0.205 0.189 0.283 13.0 11.7 8.3 18.2 0.87 

Gl 0.218 0.182 0.164 0.297 13.5 12.8 9.3 18.3 0.27 

He 0.222 0.197 0.182 0.337 13.0 11.6 8.6 18.0 0.87 

Ml - - - - 13.7 12.9 9.1 20.2 0.1 

 

 
 



Table 2. Breakpoints H1 and H2 and the slope between them, Slope2, fitted using piecewise regressions. All regressions and fit 

parameters are significant (p ≤ 0.01) except for sites Au, He and Ml (n.s: not significant). Training sites are underlined, the others 

are validation sites. 

 AW Gr Me Mo Tr Au Br Gl He Ml 

adjusted R2  0.92 0.96 0.88 0.90 0.96 0.80 0.92 0.98 0.98 0.97 

H1 ± std 19.9 ± 0.4 15.5 ± 0.4 19.3 ± 0.6 20.6 ± 0.5 18.8 ± 0.4 n.s. 13.2 ± 0.6 15.2 ± 0.3 15.5 ± 0.1 n.s. 

Slope2 ± std -11.5 ± 1.5 -8.9 ± 0.8 -8.8 ± 0.9 -12.5 ± 0.8 -9.3 ± 1.1 -3.6 ± 0.4 -4.9 ± 0.4 -6.0 ± 0.2 n.s. n.s. 

H2 ± std 25.2 ± 0.5 19.6 ± 0.4  23.4 ± 0.6 24.5 ± 0.6 23.8 ± 0.4 22.3 ± 1.6  21.7 ± 0.8 25.8 ± 0.4 27.8 ± 1.4 22.3 ± 0.8 

 
 



Table 3. Fraction of incident light (in %), Fr, reaching KF depth limit 

H2.  Fr values are calculated (eq. 1) for four water transparency 

variables: KPARyear, KPARgrowth, KPARmin and KPARmax. Fr is not 

estimated for the site Ml, because no turbidity data are available. 

Training sites are underlined, the others are validation sites. 

 
2HFr (KPARyear) 

2HFr (KPARgrowth) 
2HFr (KPARmin) 

2HFr (KPARmax) 

AW 0.66 0.80 1.26 0.15 

Gr 0.57 2.32 1.95 0.62 

Me 0.64 1.17 1.36 0.18 

Mo 0.80 1.41 1.98 0.12 

Tr 0.78 1.51 1.46 0.12 

Au 1.04 2.19 2.56 0.08 

Br 0.84 1.17 1.65 0.21 

Gl 0.36 0.91 1.44 0.05 

He 0.21 0.42 0.63 0.01 

Ml - - - - 

 

 

 

 

 

 

 

 

 



Table 4. Prediction of KF depth limit H2. Observed H2 are from piecewise regression (Table 2), 

predicted and simulated H2 are from predictive model (pred_mod3 or pred_mod4*) but simulated 

ones follow varied scenarios (see text for detail). Training sites are underlined, the others are 

validation sites. 

Site Observed H2 Predicted H2 Simulated H2(0.01) Simulated H2(0.02) Simulated H2(0.05) 

AW 25.2 ± 0.5 25.0 ± 0.6 23.8 ± 0.6 22.4 ± 0.6 19.0 ± 0.6 

Gr* 19.6 ± 0.4 20.2 ± 0.0 21.2 ± 0.4 22.8 ± 0.4 25.5 ± 0.4 

Me 23.4 ± 0.6 23.3 ± 0.4 22.1 ± 0.4 20.8 ± 0.4 17.2 ± 0.4 

Mo 24.5 ± 0.6 24.3 ± 0.5 23.3 ± 0.5 22.0 ± 0.5 18.4 ± 0.5 

Tr 23.8 ± 0.4 24.3 ± 0.8 23.1 ± 0.8 21.9 ± 0.8 18.2 ± 0.8 

Au* 22.3 ± 1.6 20.3 ± 0.1 21.4 ± 0.1 23.0 ± 0.1 25.7 ± 0.1 

Br 21.7 ± 0.8 22.5 ± 0.5 21.26 ± 0.5 20.0 ± 0.5 16.4 ± 0.5 

Gl 25.8 ± 0.4 24.0 ± 0.1 22.8 ± 0.1 21.6 ± 0.1 17.9 ± 0.1 

He 27.8 ± 1.4 23.3 ± 1.6 22.1 ± 1.6 20.9 ± 1.6 17.3 ± 1.6 

Ml* 22.3 ± 0.8 21.8 ± 0.0 23.0 ± 0.0 24.6 ± 0.0 27.2 ± 0.0 
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