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ABSTRACT 

Aquaculture is an industry with the capacity for further growth that can 

sustainably feed an increasing human population. Sugar kelp (Saccharina latissima) is 

of particular interest for farmers as a fast-growing species that benefits ecosystems. 

However, as a new industry in the U.S., farmers interested in growing S. latissima lack 

data on growth dynamics. To address this gap, we calibrated a Dynamic Energy 

Budget (DEB) model to data from the literature and a 2-year growth experiment in 

Rhode Island (U.S.). Environmental variables forcing model dynamics included 

temperature, irradiance, dissolved inorganic carbon (DIC) concentration, and nitrate 

and ammonium concentration. The modeled final estimate for S. latissima blade length 

(cm) was reasonably accurate despite underestimation of early season growth. Carbon 

limited winter growth due to a low modeled specific relaxation rate (i.e. the light-

dependent reactions of photosynthesis) for some model runs; other model runs 

displayed nitrogen limitation which occasionally led to length overestimation and 

underestimation due to the degree of interpolation necessary from the field data. The 

model usage, however, is restricted to S. latissima grown in an aquaculture setting 

because of assumptions made about tissue loss, summer growth patterns, and 

reproduction. The results indicate that our mechanistic model for S. latissima captures 

growth dynamics and blade length at the time of harvest, thus it could be used for 

spatial predictions of kelp aquaculture production across a range of environmental 

conditions. The model could be a particularly useful tool for further development of 

sustainable ocean food production systems in the U.S. involving seaweed. 
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Abstract 
Aquaculture is an industry with the capacity for further growth that can 

sustainably feed an increasing human population. Sugar kelp (Saccharina latissima) is 

of particular interest for farmers as a fast-growing species that benefits ecosystems. 

However, as a new industry in the U.S., farmers interested in growing S. latissima lack 

data on growth dynamics. To address this gap, we calibrated a Dynamic Energy 

Budget (DEB) model to data from the literature and a 2-year growth experiment in 

Rhode Island (U.S.). Environmental variables forcing model dynamics included 

temperature, irradiance, dissolved inorganic carbon (DIC) concentration, and nitrate 

and ammonium concentration. The modeled final estimate for S. latissima blade length 

(cm) was reasonably accurate despite underestimation of early season growth. Carbon 

limited winter growth due to a low modeled specific relaxation rate (i.e. the light-

dependent reactions of photosynthesis) for some model runs; other model runs 

displayed nitrogen limitation which occasionally led to length overestimation and 

underestimation due to the degree of interpolation necessary from the field data. The 

model usage, however, is restricted to S. latissima grown in an aquaculture setting 

because of assumptions made about tissue loss, summer growth patterns, and 

reproduction. The results indicate that our mechanistic model for S. latissima captures 

growth dynamics and blade length at the time of harvest, thus it could be used for 

spatial predictions of kelp aquaculture production across a range of environmental 

conditions. The model could be a particularly useful tool for further development of 

sustainable ocean food production systems in the U.S. involving seaweed. 

 



 3 

1.  Introduction 
With a growing global population, one of the greatest challenges is providing 

healthy diets from sustainable food systems (Duarte et al., 2009, Merino et al., 2012, 

Willett et al. 2019). Meeting these demands requires strategies for optimization and 

development across each food production industry in both terrestrial and aquatic 

habitats. Aquaculture is currently the fastest growing food production sector in the 

world and now produces more seafood than wild-capture fisheries (FAO, 2018). 

Within aquaculture, the ocean is increasingly viewed as an important area of 

expansion. This is because mariculture, or the farming of seafood in the ocean, has had 

one of the largest relative production increases in the last thirty years and has positive 

growth trajectories in many countries (Cottrell et al., 2018; Gentry et al., 2019). In 

fact, mariculture systems produced around 28.7 million tons of food in 2016 (FAO, 

2018). The species, methods, and location of aquaculture will dictate its future 

contribution to the global food system within sustainable limits, particularly in the 

ocean (Gentry et al. 2017, Willett et al. 2019). 

Aquaculture can have negative environmental impacts. In open systems of fed 

species, this negative impact is largely due to concentrated flows of feces and feed 

wastage leading to eutrophication (Wu, 1995) and alteration of food webs (Herbeck et 

al., 2013). Food for aquaculture species can put more pressure on terrestrial or aquatic 

food production systems, where the biomass harvested of one species is then 

reconstituted and serves as the input for the farming of another species (Cottrell et al., 

2018). Open aquaculture systems composed of species that do not require 

supplemental feed or nutrients (i.e., primary producers and filter feeders) avoid these 

harms and instead can perform important ecosystem services such as removing 
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dissolved organic and inorganic nutrients (Alleway et al., 2019). In particular, seaweed 

is of interest for nutrient capture in integrated multi-trophic aquaculture (IMTA) 

systems where they utilize the inorganic carbon and nitrogenous compound outputs 

from fed species such as finfish (Chopin, 2015). Other potential benefits of growing 

seaweed are its ability to combat hypoxia from terrestrial food production systems and 

even protect shorelines through dampening of wave energy (Duarte et al., 2017). 

Outside of these ecosystem services, growing seaweed has been proposed as a way to 

engage a wider public audience with climate change via offsetting carbon emissions 

(Froehlich et al., 2019). Seaweed aquaculture has the potential to generate net positive 

environmental and social impacts, but this industry has been traditionally concentrated 

in Asian countries (FAO, 2018). 

Seaweed aquaculture in the U.S. is a nascent industry. The U.S. does not 

produce enough aquatic plants to even register in the global production statistics (< 

0.1%; FAO, 2018). In the Northeast U.S., sugar kelp (Saccharina latissima) is a local 

species of recent interest for food, biofuel, bioremediation, and pharmaceutical 

products (Forbord et al., 2012). S. latissima grows to large sizes very quickly and 

individuals can reach lengths greater than four meters in less than five years in the 

wild (Borum et al., 2002). In a single season of aquaculture growth, S. latissima blades 

can grow between 60-140 cm depending on the water depth, planting time, and 

nutrient availability (Handå et al., 2013). Oysters, however, are the most widely 

aquacultured species in coastal areas of the U.S (NMFS, 2018). The Eastern oyster 

(Crassostrea virginica) mostly grows during the summer months where water 

temperatures are above 15 °C and is in a state of relative dormancy in the winter 



 5 

(Dame, 1972). Therefore, it has been suggested that S. latissima could complement 

farmed oysters because of the differences in growing season, thus providing an 

additional source of income without interfering with oyster production. This new 

industry, however, would benefit from production estimates that would enable farmers 

to decide whether it is possible or lucrative to farm kelp. 

Bioenergetics allows for study of factors influencing an individual species’ 

growth through assessment of energy relationships and transformations. Thus, 

bioenergetics models can support the creation of production estimates. Growth of S. 

latissima has been studied in both field and laboratory settings in response to 

environmental conditions. For example, the impacts of irradiance, temperature, and 

nutrient concentration on S. latissima growth were highlighted through a transplant 

experiment with kelps at different depths (Boden, 1979). In a simple predictive model 

created for S. latissima, growth was assumed to have a linear relationship with 

dissolved inorganic nitrogen concentration (with a temperature correction; Petrell et 

al., 1993). This model required an assumption that nitrogen dynamics are always 

limiting growth, thus ignoring the potential influence of irradiance. Light-harvesting 

characteristics of S. latissima have been shown to vary in populations from different 

ambient light regimes (Gerard, 1988), so irradiance is an important factor on this 

species’ dynamics. Dynamic energy budget (DEB) theory provides a framework to 

examine the interactive effects of environmental nutrient concentrations and irradiance 

on an organism through parallel systems of nitrogen and carbon dynamics (Kooijman, 

2010). DEB theory is a formal theory of metabolism, which is used to model the flow 

of mass and energy through an organism from uptake to usage for growth, 
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maintenance, reproduction, or excretion. DEB theory provides a sound mechanistic 

basis for understanding an organism’s energetics.  

Modeling autotrophs is a relatively new direction for DEB theory. The 

standard DEB model, which has been applied to many animal species, is appropriate 

for an animal that does not change shape through development and eats only one food 

source with a constant chemical composition. The standard DEB model has one 

reserve and one structure; structure and reserve are the central pools of matter modeled 

as state variables within an organism. For the application of DEB theory to autotrophs, 

such as S. latissima, multiple reserves are necessary to accurately model matter and 

energy dynamics because nutrient uptake can occur separately from photosynthesis 

(Kooijman, 2010). Autotroph DEB models have been constructed for microalgae 

(Lorena et al., 2010, Livanou et al., 2019), phytoplankton-zooplankton interactions 

(Poggiale et al., 2010), calcification of a coccolithophore (Muller and Nisbet, 2014), 

and the macroalga Ulva lactuca (Lavaud et al., under review). Other modelers have 

used dynamic bioenergetic models that borrow some concepts from DEB theory but 

selected a greater degree of simplification to model S. latissima (Broch and Slagstad, 

2012) and the interaction between heterotrophic coral and autotrophic Symbiodinium 

spp. (Cunning et al., 2017). The model of Norwegian S. latissima was created as a tool 

for optimizing aquaculture production (Broch and Slagstad, 2012). They chose a 

simpler base structure than Lorena et al. (2010), but this simplification does not 

increase parsimony (i.e. reduce the number of model parameters) because of their use 

of correction functions where a DEB model would not need them. For example, a 

simple functional response is used to control the effect of frond size on gross growth 



 7 

rate because smaller kelps grow faster than larger kelps (Broch and Slagstad, 2012). 

This would be redundant in a DEB model with maintenance because the maintenance 

cost is volume specific (Lorena et al., 2010).  

Our primary objective is to develop a bioenergetics model for S. latissima 

growth. Specifically, we aim to calibrate the general structure of a macroalgae DEB 

model to our field data from Rhode Island (U.S.). The resulting model allows for 

growth predictions based on inputs of environmental conditions and has the potential 

to support the sustainable aquaculture industry, particularly with regard to site 

selection. 

 
2.  Methods 
 
2.1  Dynamic Energy Budget Model Structure 

The core structure of the S. latissima model tracked the uptake of carbon and 

nitrogen, their assimilation into reserves and allocation to growth, maintenance, or 

excretion (Figure 1). The variables that depict the state of the model were nitrogen 

reserve density, carbon reserve density, and structure. There were three differential 

equations to represent the change in the state variables over time. The differential 

equation solver used to run the model in R (R Core Team, 2019) was the package 

deSolve (Soetaert et al., 2010). The model initial conditions (Table S1a) and molecular 

weights for the structure and the reserves (Table S1b) were set at consistent values 

across each model run. The parameters (Table 1) and equations (Table 2) for this S. 

latissima model were based on Papadakis et al. (2005), Lorena et al. (2010), Livanou 

et al. (2019), and Lavaud et al. (under review). A detailed description of each model 

equation can be found in Appendix S2. An allometric relationship from Gevaert et al. 
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(2001) was used to convert from dry weight to the length of the kelp blade. This was a 

simplification from determining a shape coefficient which would be a more standard 

conversion factor in DEB theory. Finally, the model allowed for the prediction of kelp 

length, nutrient uptake, or rejection fluxes from data on irradiance, dissolved inorganic 

carbon (DIC) concentration, nitrate and ammonium concentration, and temperature. 

 
2.2  Dynamic Energy Budget Model Assumptions 

A core assumption of DEB theory, strong homeostasis, maintains that reserve 

and structure have constant chemical compositions (Kooijman, 2010). This does not 

mean that there are always constant amounts of reserve and structure; rather, it means 

that the amount of carbon, nitrogen, hydrogen, and oxygen relative to each other 

within specific reserves or structures remains constant. For example, laminarin and 

mannitol are key storage carbohydrates of S. latissima (Schiener et al., 2015). 

Therefore, we modeled the carbon reserves with a chemical composition similar to 

laminarin, mannitol, and glucose setting a constant ratio of one carbon to two 

hydrogen to one oxygen (1:2:1, C:H:O). 

For our S. latissima DEB model, we considered two reserve pools: carbon and 

nitrogen (nitrate and ammonium, collectively); other potential nutrients such as 

phosphorous or potassium were dismissed. We feel this is a valid assumption, 

especially in regions where nitrogen is not abundant year-round and nitrogen 

availability is what drives accelerated growth in winter and early spring (Gagné et al., 

1982). A previous dynamic model for Norwegian S. latissima growth also chose to use 

only a carbon and a nitrogen reserve (Broch and Slagstad, 2012). Adding further 

reserves to the model would increase complexity by increasing the number of state 
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variables and parameters with potentially little to no accompanying increase in 

accuracy. Our model also assumed that the energy carbon concentrating mechanisms 

used to convert bicarbonate into carbon dioxide do not have a significant impact on 

the overall energetics. The majority of the dissolved inorganic carbon in the ocean is 

in the form of bicarbonate (Raven et al., 2005); S. latissima and other algae use 

carbonic anhydrase in carbon concentrating mechanisms to assimilate bicarbonate and 

convert it into carbon dioxide (Axelsson et al., 2000). In other words, we assumed that 

assimilating carbon dioxide directly was identical to assimilating carbon dioxide that 

was formed extracellularly from bicarbonate through a carbon concentrating 

mechanism. 

Another assumption of our DEB model was that S. latissima can be considered 

as a V1-morph. In DEB theory, V1-morphs are organisms whose surface area is 

proportional to volume, which simplifies the dynamics of the model (Kooijman, 

2010). Saccharina latissima grows as a sheet in both length and width directions at the 

meristematic blade region near the stipe (Sjøtun, 1993). We were assuming variation 

in blade thickness over an individual blade and through time (Vettori and Nikora, 

2017) would not have a substantial enough impact on this surface area to volume ratio 

to preclude the V-1 morph assumption. Assuming that surface area was proportional to 

volume is reasonable at sites where there are not major differences in water velocity. 

Drag from water speed has been found to change blade morphology; more sheltered 

environments have led to wider blades with ruffled edges and areas with strong 

currents have caused blades to be more strap-like (Buck and Buchholz, 2005). Even 
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with this plastic morphology, the change in blade height was still small enough to not 

significantly impact surface areas in regions with similar water speeds. 

Other assumptions for this model were grounded in reducing the time of year 

that the model can be logically applied. Energy was not used for reproduction or 

maturity in our model for S. latissima as it would be in a standard DEB model, which 

is a simplification that allows for a more parsimonious model. Saccharina latissima 

peaks in reproduction twice a year, June and October, but can have reproductive tissue 

year-round (Lee and Brinkhuis, 1986). There is evidence it produces inhibitors that 

minimize the formation of reproductive tissue during the rapid growth phase 

(Buchholz and Lüning, 1999, Lüning et al., 2000). Reproductive development 

happens, but only for a small subset of blades by the time the aquaculture harvest 

occurs in Spring towards the end of first period of rapid growth. Apical frond loss in 

kelps is correlated with temperature stress and wave action (Krumhansl et al., 2014), 

mechanical stress of biofouling (Brown et al., 1997), and overall blade length (Sjøtun, 

1993). Our model does not incorporate a correction for apical frond loss because we 

were focusing on the aquaculture season and the exact mechanism for this loss 

remains very context-specific in the literature. Furthermore, aquaculture farmers 

generally harvest kelp before biofouling begins, which maximizes harvestable blade 

length. We also assumed photoinhibition does not occur, which is similarly reasonable 

for the aquaculture season but not the summer. Photoinhibition does occur in S. 

latissima especially when high light conditions are combined with high temperature 

conditions (Heinrich et al., 2012). The aquaculture season of kelp is placed to 

maximize growth while minimizing loss or degradation of tissues due to various 
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stresses, and a tissue loss function would be necessary to accurately model wild kelp 

year-round. 

 
2.3  Empirical Data 
 Saccharina latissima was grown at four oyster farm sites from fall to spring in 

both 2017-2018 and 2018-2019 (see Table S3 for exact plant and harvest dates). Kelp 

seed was raised in aquaria from harvested local reproductive kelp tissue collected at 

Ft. Wetherill, RI, following the methods of Redmond et al. (2014), and seed lines were 

attached to ropes held in place by moorings at each of the farms. The sites were split 

between Narragansett Bay and Pt. Judith Pond, RI (Figure 2). We placed duplicate 

longlines of kelp at a depth of 1-2 m at all the field sites. Kelp growth, measured as 

length and width (cm), was monitored every 20-85 days using a subset of individuals 

on the longline. The variability in monitoring timing was largely driven by the 

availability of farmers to assist with logistics as well as weather conditions. 

 Temperature data were collected every fifteen minutes using a HOBO® 

pendant logger. Water samples were collected when kelp growth measurements were 

taken to determine the concentrations of nitrate and ammonium. In 2017-2018, nitrate 

and ammonium concentration measurements were made using a LACHAT Flow 

Injection Autoanalyzer (LACHAT, 2008). In 2018-2019, nitrate and ammonium 

concentration measurements were made using an Astoria Pacific Model 303A 

Segmented Continuous Flow Autoanalyzer (Astoria-Pacific Inc, Clackamas, OR; 

Eaton et al., 1998).  
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2.4  Environmental Forcing Functions 
 The S. latissima model was forced with temperature, irradiance, dissolved 

inorganic carbon (DIC) concentration, and nitrate and ammonium concentration data 

on an hourly time step. Temperature recorded at fifteen-minute intervals were 

averaged on an hourly basis and was identical at each kelp line at a specific site and 

year in the model because we only had a logger on one of the longlines at each site 

and assumed the conditions were the same at the other. Due to difficulties with 

biofouling on irradiance loggers, we used radiative forcing from the North American 

Regional Reanalysis (Mesinger et al., 2006) to estimate photosynthetically active 

radiation (PAR; Appendix S4). We used linear interpolation to create an hourly 

forcing from source data from every three hours (Figure 3). All sites have the same 

base irradiance forcing in one year using this method. DIC concentration data were not 

collected in this study, so this forcing is estimated from other sources. The Pt. Judith 

Pond sites were held at a constant DIC value based on U.S. Environmental Protection 

Agency data from Ninigret Pond (J. Grear, unpublished data). The Narragansett Bay 

sites were held at a constant DIC value based on data from Brenton Point (Segarra, 

2002). We used linear interpolation to estimate hourly nitrate and ammonium 

concentrations. 

 
2.5  Model Calibration 

The parameters for our model were set using a combination of manual fitting 

to literature data, values from previous autotroph DEB models, and field data from this 

study (Table 1). Literature data on basic physiological rates were compiled to 

simultaneously calibrate parameters using the model equations (Table 3). Information 

about the locations where these studies were conducted was also included because 
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there are multiple ecotypes of S. latissima (Gerard, 1988), which may influence their 

physiological response. Due to a lack of local information on certain aspects of kelp 

growth, this model was calibrated with data across multiple ecotypes of kelp. The 

Arrhenius relationship parameters were calculated using a least squared non-linear 

regression on the compiled literature rates which were standardized using the 

reference temperature. The nitrate and ammonium uptake parameters, maximum 

volume specific nitrogen assimilation and half-saturation concentration for NO3- and 

NH4+ uptake, were calibrated using nitrate uptake data from Espinoza and Chapman 

(1983). Photosynthesis parameters, photosynthetic unit (PSU) density, binding 

probability of a photon to a free light synthesizing unit, and dissociation rate of 

releasing ATP and NADPH+, were calibrated using oxygen production data from 

Johansson and Snoeijs (2002). Root mean square error (RMSE) was used as a measure 

of spread in the residuals for assessing the quality of each parameter calibration. 

 
2.6  Sensitivity Analyses 
 To determine how each DEB parameter influenced results, we analyzed the 

local sensitivity of 𝒎𝑬𝑪 C reserve density, 𝒎𝑬𝑵 N reserve density, and 𝑴𝑽 structural 

mass to model parameters using an L1 summary value of sensitivity from the R 

package FME (Soetaert and Petzoldt, 2010). L1 is a summation of the absolute value 

of all the elements in a sensitivity matrix divided by the number of elements. Each 

element of the sensitivity matrix is calculated by multiplying the change in the output 

variable over the change in a parameter to the scaling of that same parameter over the 

scaling of that same output variable. The scaling here is usually equal to the value of 

the variable or parameter (Soetaert and Petzoldt, 2010). Parameters have unequal 
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impacts on model outcomes, and this method allowed us to determine what parameters 

are having the largest effects on 𝒎𝑬𝑪, 𝒎𝑬𝑵, and 𝑴𝑽. 

3.  Results 
 
3.1  Model Calibration: Literature Data 

The Arrhenius relationship fit to the compiled literature data (Table 3) 

reflected maximum physiological rates at temperatures around 13 °C (Figure 4). The 

lower boundary of the Arrhenius relationship was 0 °C, and the upper boundary was 

13.39 °C. The adjusted R-squared for this relationship was 0.55 (p-value = 2.74e-11). 

Using the nitrate uptake data from Espinoza and Chapman’s (1983) site that 

was seasonally depleted of nitrate between April and November provided estimates of 

maximum volume specific ammonium and nitrate assimilation of 2.7 *10-4 (mol N 

mol MV-1 h-1) and a half-saturation concentration of 2.667 *10-6 (mol NO3- and NH4+ 

L-1) (Figure 5). The fit for the data collected at 18 °C was slightly better at a RMSE of 

9.73e-07 (mol N gDW-1 h-1) than the 9 °C data at 1.43e-06 (mol N gDW-1 h-1). 

For the oxygen production data (Johansson and Snoeijs, 2002) used to calibrate 

the photosynthesis parameters, the values that had the lowest error around the data 

were a 𝜌()* photosynthetic unit (PSU) density of 0.05 (mol PSU mol MV-1), a �̇�- 

binding probability of a photon to a free light synthesizing unit of 2.8 *10-6 (unitless), 

and a �̇�-	dissociation rate of releasing ATP and NADPH+ of 0.28 (mol NADPH mol 

PSU-1 h-1; Figure 6). The resulting RMSE was 0.000457 (g O2 g DW-1 h-1). The 

maximum oxygen production rate of the model was around 0.00495 g O2 g DW-1 h-1 

(Figure 6). 

Appropriate literature data for calibrating carbon dioxide uptake were not 

available. Air-based carbon dioxide uptake data for S. latissima (Ní Longphuirt et al., 
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2013) were examined but ultimately rejected due to likely dissimilarity to submerged 

carbon dioxide uptake. Other parameters in DEB models such as the reserve turnover 

rates could not be compared to measurable physiological data due to the internal 

nature of the processes without easily interpretable signals, so these parameters were 

set at values similar to those in Lorena et al. (2010) and Lavaud et al. (under review).  

3.2  Model Forcing Functions: Field Data  
Converting the collected environmental field data into hourly values involved 

varying degrees of estimation which result in diverging degrees of accuracy. The 

temperature correction functions for both kelp growth seasons showed a seasonal trend 

and were the most accurate of the forcing information because the loggers were 

reliable and collected data on fifteen-minute intervals (Figure 7). For 2017-2018, the 

maximum water temperature recorded at our sites was 16.7 °C in November resulting 

in a temperature correction of 1.27 and the minimum temperature was -1.72 °C in 

January resulting in a temperature correction of 0.48. For 2018-2019, the maximum 

ocean temperature was 15.28 °C in May resulting in a temperature correction of 1.35 

and the minimum temperature was -1 °C in January resulting in a temperature 

correction of 0.52. For comparison, the temperature at which maximum physiological 

rates occur (13°C) had a 1.4 temperature correction. Temperature changes were 

consistent across all four sites for both years. 

The nitrate and ammonium concentration forcing variable had larger 

inaccuracy than temperature because of the linear extrapolation between the 

measurements (Figure 8). The mean nitrogen concentration at the Pt. Judith Pond sites 

was 4.37e-06 mol NO3- and NH4+ L-1 (± 3.69e-06) and 1.32e-06 mol NO3- and NH4+ 

L-1 (± 3.21e-06) at the Narragansett Bay sites for 2017-2018. For 2018-2019, the mean 
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nitrogen concentration at the Pt. Judith Pond sites was 2.19e-06 mol NO3- and NH4+ L-

1 (± 2.28e-06) and 4.07e-06 mol NO3- and NH4+ L-1 (± 4.38e-06) at the Narragansett 

Bay sites.  

The maximum PAR estimated in the irradiance forcing was 3,833,408 μE m-2 

h-1 in 2017-2018 on the last day of harvest (4/22/18) and 3,977,676 μE m-2 h-1 in 2018-

2019  close to the harvest in Narragansett Bay (5/22/19) (Figure 3). 

3.3  S. latissima Growth and Model Dynamics 
Saccharina latissima grew quickly with mean elongation across all sites 

studied of 0.87 ± 0.63 cm/d in 2017-2018 and 1.18 ± 0.62 cm/d in 2018-2019 (Figure 

9). End of season blade length growth varied, but no clear site variation was observed 

(Table 4). The S. latissima DEB model generally underestimated growth observed in 

the early parts of the season (planting to end of March) but accurately predicted the 

length at harvest within one standard deviation of the observed mean length for some 

sites (Figure 9 and 10). An exception to this trend was the first kelp line planted at Pt. 

Judith Pond South in the 2017-2018 growing season for which length was 

overestimated by the end of the season. The RMSEs for the model length prediction to 

the field length data ranged widely from 5.16 to 62.72 cm (Figure 9). 

Examining internal model dynamics allowed for clearer understanding of 

predicted growth. Specifically, examining the reject fluxes (mass rejected at the 

growth synthesizing unit based on the stoichiometric ratio of C or N reserve 

compounds required for building structure) allowed for examination of model 

limitation. The side of the model (C or N) with a flatline or decreasing trend in the 

reject flux is the side limiting growth. The carbon reserve (carbohydrates) limited 

model growth after planting for greatly variable timespans across the sites, seasons, 
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and lines (Figure S5a, Figure 5b). For example, in Pt Judith Pond in 2018-2019, at the 

S site, the C reserve is essentially never limiting due to persistent N reserve limitation 

whereas, at the N site, carbon limitation persists until March (Figure S5a and S5b). N 

is generally limiting by the end of the kelp aquaculture season (Figure S5a and S5b). 

Since both irradiance and DIC concentration impact carbon assimilation, plots of these 

initial assimilation fluxes revealed which one of these factors limits carbon 

assimilation. The specific assimilation rate of carbon mirrored the shape of the specific 

relaxation rate (Figure S5c and S5d). The shape of the specific relaxation rate (Figure 

S5c) reflected the influence of the temperature correction (Figure 7) rather than that of 

the magnitude of the irradiance forcing (Figure 3). 

3.4  Sensitivity Analyses 
 The parameters with the largest effects (>3000 L1 summary value of 

sensitivity functions) on the state variables were 𝒎𝑬𝑪 C reserve density, 𝒎𝑬𝑵 N 

reserve density, and 𝑴𝑽 structural mass were 𝑻𝟎 reference temperature, 𝑻𝑯 upper 

boundary of temperature tolerance, 𝑻𝑳 lower boundary of temperature tolerance, 𝑻𝑨𝑯 

Arrhenius temperature outside TH, 𝑻𝑨𝑳 Arrhenius temperature outside TL, 𝒚𝑬𝑪𝑽 yield 

factor of C reserve to structure, 𝜿𝑬𝒊 fraction of rejection flux incorporated back in i-

reserve, 𝒚𝑰𝑪 yield factor of C reserve to NADPH, and 𝒚𝑪𝑶𝟐𝑪 yield factor of C reserve 

to CO2 (Figure 11). The parameters with the moderate effects (1000-2000) on the state 

variables were �̇�𝑬𝑪𝑨𝒎 max. volume specific carbon assimilation, and �̇�𝑰 dissociation 

rate of releasing ATP and NADPH+. The parameters with small but non-zero effects 

on the state variables were 𝒚𝑬𝑵𝑽 yield factor of N reserve to structure, 𝒌𝑬𝑪̇  carbon 

reserve turnover rate, and 𝝆𝑷𝑺𝑼 photosynthetic unit (PSU) density (Figure 11). 
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4.  Discussion 

Further mariculture development represents a key role in expanding U.S. 

sustainable food production, and macroalgae can provide high returns if the proper 

growth conditions exist. Thus, understanding the growth dynamics of S. latissima can 

provide the industry with a powerful predictive tool for estimating production. Our 

model is the first attempt to apply Dynamic Energy Budget (DEB) theory to a 

macroalga of the order Laminariales. The model tended to underestimate initial 

growth of S. latissima due to a low modeled specific relaxation rate or for sites where 

N was limiting an inaccurate N forcing. The model was good, however, at predicting 

final growth rates (Figure 10). Our process-based model also allowed us to better 

understand local growth limitations as they relate to the behavior of the model. 

4.1  Growth Limitation 
 We hypothesize that the early season model underestimation of S. latissima 

length growth results from limited modeled carbon assimilation due to a low modeled 

specific relaxation rate (i.e. the light-dependent reactions of photosynthesis) for those 

model runs where C dynamics are the limiting factor. Seasonal temperature change 

and diurnal irradiance oscillation appear to control C assimilation via the specific 

relaxation rate rather than a seasonal trend of irradiance magnitude change. There is 

some evidence that winter limitation of C dynamics occurs in the field; S. latissima 

individuals older than a year were shown to have a decrease in blade C content mid-

winter suggesting consumption of stored carbohydrates (Sjøtun, 1993). New 

sporophytes would not have this carbohydrate pool to draw upon. This decrease in C 

content suggests that C dynamics may be limiting S. latissima growth, but limitation 

was not directly examined by Sjøtun (1993). 



 19 

For those model runs where C dynamics are the limiting factor, the early 

season (planting to end of March) model underestimation of field growth may reflect 

that the temperature correction has too powerful of an impact on the specific 

relaxation rate in comparison to irradiance. The seasonal trend of the specific 

relaxation rate reflects the seasonality of temperature; we suspect that the assumption 

of temperature impacting �̇�- dissociation rate of releasing ATP and NADPH+ may 

cause temperature to have an outsized impact in comparison to irradiance magnitude. 

Ocean temperature trends trail behind irradiance change, and Narragansett Bay is no 

exception to this pattern (Brady-Campbell et al., 1984). Saccharina latissima’s early 

season growth could be driven by this early season increase in irradiance rather than 

water temperature change. This possibility is further reason to verify an organism’s 

Arrhenius relationship regionally if there is potential for different degrees of 

temperature adaptation. More data is necessary to confirm if the S. latissima model 

underestimates winter kelp growth due to the impact of temperature on modeled 

photosynthesis. 

Other than an increase in irradiance, daylength is a linked variable that could 

impact seasonal growth patterns. Broch and Slagstad’s (2012) S. latissima model used 

the rate of change of day length in a photoperiodic effect function to create seasonality 

in their growth prediction. This is based on the hypothesis that S. latissima is a 

“seasonal anticipator” with endogenous circadian rhythms (Kain, 1989). Seasonal 

anticipators are posited to grow strategically in response to a trigger as opposed to 

simply responding to environmental conditions. Other kelps, Laminaria hyperborea 

and Laminaria digitata, have been shown to have free-running seasonal growth 
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patterns which suggests control by endogenous circadian rhythms (Schaffelke and 

Lüning, 1994). Species-specific evidence for this circadian hypothesis is lacking 

including the mechanism for what would trigger S. latissima’s photoperiodic response. 

Another possible reason for underestimation of early season carbon dynamics 

in the S. latissima model may be a lack of energy gain at night. Saccharina latissima’s 

carbon dioxide exchange rate, the difference in inflow and outflow carbon dioxide 

multiplied by the airflow rate, is not closely correlated with irradiance because carbon 

dioxide uptake by the alga continues into the dark (Mortensen, 2017). Light-

independent carbon fixation relies on energy from the light reactions during the day 

(Cabello-Pasini and Alberte, 2001). On average, 11% of S. latissima’s carbon fixation 

happens in the dark (Kremer and Markham, 1979). The linkage between the light-

dependent and light-independent reactions is modeled as an immediate transference. In 

other words, when there is no irradiance input to the S. latissima model, the 

assimilation of carbohydrates to the carbon reserve is zero. This is not reflective of the 

lag which allows for the formation of carbohydrates in the dark, but we would argue 

that adding this layer of physiological accuracy would reduce model efficiency 

without enough increase in the predictive capacity. 

Where N dynamics limit growth below the level observed in the field, the 

heavily interpolated N forcing is likely not reflective of actual conditions. The N 

forcing effects our ability to fit the overall model tightly to all runs simultaneously due 

to overestimation of blade length in some runs with an overinflated N forcing and 

underestimation in others. 



 21 

4.2 Sensitivity Analysis 
Identifying parameters that a model is highly sensitive to gives us a clearer 

idea of what parameters are likely to shift the overall fit of a model (Soetaert and 

Petzoldt, 2010). The high sensitivity of the state variables to the temperature related 

parameters is a logical outcome of the central role of temperature in DEB theory. 

Since the temperature correction is applied to such a large number of rates in the 

organism, the high sensitivity to these values is reasonable. The sensitivity of the 

model to the temperature parameters is an argument for caution in regional calibration 

of the Arrhenius relationship. The sensitivity of the kelp model to 𝜿𝑬𝒊 fraction of 

rejection flux incorporated back in i-reserve contrasts with the sensitivity of Lorena et 

al (2010)’s microalgae model to the same parameter. The fact that the kelp model is 

sensitive to changes in 𝜿𝑬𝒊 is concerning as this is not a parameter that we can easily 

determine with relevant literature data. 𝒚𝑰𝑪 yield factor of C reserve to NADPH and 

𝒚𝑪𝑶𝟐𝑪 yield factor of C reserve to CO2 are parameters that the model is highly 

sensitive to which reflects their divisor positions in specific assimilation rate of C 

equation; these are not important parameters to focus on because their values reflect 

ratios laid out by the photosynthesis equations, so they would not be modified to 

adjust model fit. The high sensitivity of the kelp model to 𝒚𝑬𝑪𝑽 yield factor of C 

reserve to structure in comparison to the small but nonzero impact of 𝒚𝑬𝑵𝑽 yield factor 

of N reserve to structure might be reflective of the relative proportions greater amount 

of C reserve required by the chemical composition of the structure. This concept is 

similarly supported by the majority of the parameters the state variables are sensitive 

to being a part of C dynamics such as the moderate sensitivity to �̇�𝑬𝑪𝑨𝒎 maximum 
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volume specific carbon assimilation and �̇�𝑰 dissociation rate of releasing ATP and 

NADPH+. The state variables are more sensitive to �̇�𝑰 than the other photosynthesis 

parameters which likely reflects its position of power as a divisor in the specific 

relaxation rate equation. 

4.3  Model Application 
Limitations to broader geographic use of this model center around the 

plasticity of S. latissima and the existence of ecotypes. The differentiation of ecotypes 

occurs when individuals have an acclimation range related to their habitat of origin 

(Gerard, 1988). For instance, S. latissima individuals from New York have been 

shown to have a different physiological response to temperature in a lab setting than 

individuals from Maine (Gerard, 1988). Narragansett Bay, RI is located towards the 

southern boundary of where S. latissima can survive (Taylor, 1972). The existence of 

multiple ecotypes of this species suggests that parameters may require regional 

adjustment, particularly in the Arctic. Our model assumptions about surface area’s 

proportionality to volume impedes prediction of blade shape plasticity, which is a 

characteristic of S. latissima related to drag (Buck and Buchholz, 2005). Since the 

blade thickness and amount of blade ruffling impact the relationship between surface 

area and volume, this complicates the use of the model in areas with either 

significantly different amounts of drag from water motion or highly variable water 

motion. 

Further research on the mechanisms for frond loss, blade plasticity, and 

regional parameter information have the potential to improve this DEB model. A 

clearer physiological cause for apical frond loss would allow this to be included in 

mechanistic models in a more meaningful way than a correction function setting 
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erosion based on one correlated variable like length or age. Similarly, determining a 

mechanism for how blade type changes in response to variable water speeds would 

provide a clearer picture of overall growth dynamics. Other data that would be useful 

for understanding S. latissima physiology and increasing the accuracy of predictive 

modeling are underwater carbon dioxide uptake data in response to variable irradiance 

and more regionally appropriate oxygen production data in response to variable 

irradiance. 

Our S. latissima model is a first step towards estimating kelp aquaculture 

production in the U.S. Norwegian S. latissima research highlights the potential of 

dynamic modeling to both estimate the effectiveness of S. latissima as a nutrient 

assimilator in integrated multi-trophic aquaculture (IMTA) systems (Broch et al., 

2013, Fossberg et al., 2018) and estimate aquaculture production at large scales using 

a coupled biogeochemical-hydrodynamic-kelp model (Broch et al., 2019). In future 

work, our S. latissima DEB model could be coupled with a DEB model for C. 

virginica (Filgueira et al., 2014; Lavaud et al., 2017) and the Regional Ocean 

Modeling System (ROMS) with a Carbon Silicate Nitrogen Ecosystem (CoSiNE) 

model (Chai et al, 2009) to predict growth potential at sites. ROMS is a widely-used 

primitive equations ocean model and the CoSINE model integrates biogeochemical 

processes (Chai et al, 2009). Running a biogeochemical-hydrodynamic model would 

allow for farm scale predictions of environmental conditions, such as nutrients and 

light, that impact kelp growth. Mixed-methods modeling, such a DEB-ROMS 

coupling, can support logical expansion of coastal aquaculture. 
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7.  Tables 
 
Table 1. Sugar kelp DEB model parameters and units resulting from fitting the model 
to the compiled literature and field data. 
Parameter 
symbol 

Parameter 
description 

Parameter 
Units 

Value Source 

�̇�𝑬𝑵𝑨𝒎 Maximum volume 
specific nitrogen 
assimilation 

mol N mol 
MV-1 h-1 

2.7 *10-4 Espinoza 
and 
Chapman 
(1983) 

𝑲𝑵 Half-saturation 
concentration for 
NO3- and NH4+ 
uptake 

mol NO3- and 
NH4+ L-1 

2.667 *10-6 Espinoza 
and 
Chapman 
(1983) 

�̇�𝑪𝑶𝟐𝒎 Maximum volume 
specific CO2 uptake 
rate 

mol CO2 mol 
MV-1 h-1 

0.0075 This study 

𝑲𝑪 Half-saturation 
concentration for 
CO2 uptake 

mol CO2 L-1 4 *10-6 This study 

𝝆𝑷𝑺𝑼 Photosynthetic unit 
(PSU) density 

mol PSU mol 
MV-1 

0.05 Johansson 
and Snoeijs 
(2002) 

�̇�𝑰 Binding probability 
of a photon to a free 
light SU 

_____  2.8 *10-6 Johansson 
and Snoeijs 
(2002) 

�̇�𝑰 Dissociation rate of 
releasing ATP and 
NADPH+ 

mol NADPH 
mol PSU-1 h-1 

0.28 Johansson 
and Snoeijs 
(2002) 

𝒚𝑰𝑪 Yield factor of C 
reserve to NADPH 

mol NADPH 
mol EC-1 

2 Lavaud et al. 
(under 
review) 

𝒚𝑪𝑶𝟐𝑪 Yield factor of C 
reserve to CO2 

mol CO2 mol 
EC-1 

1 Lavaud et al. 
(under 
review) 

�̇�𝑬𝑪𝑨𝒎 Maximum volume 
specific carbon 
assimilation 

mol C mol 
MV-1 h-1 

0.282 This study 

𝒌𝑬𝑪̇  Carbon reserve 
turnover rate 

h-1 0.05 This study 

𝒌𝑬𝑵̇  Nitrogen reserve 
turnover rate 

h-1 0.01 This study 

�̇�𝑬𝑵𝑴 Volume specific 
maintenance cost 
paid by N reserve 

mol EN mol 
MV-1 h-1 

3.2 *10-5 This study 
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�̇�𝑬𝑪𝑴 Volume specific 
maintenance cost 
paid by C reserve 

mol EC mol 
MV-1 h-1 

1.4 *10-5 This study 

𝒚𝑬𝑵𝑽 Yield factor of N 
reserve to structure 

mol EN mol 
MV-1 

0.04 Lorena et al. 
(2010) 

𝒚𝑬𝑪𝑽 Yield factor of C 
reserve to structure 

mol EC mol 
MV-1 

1 This study 

𝜿𝑬𝒊 Fraction of rejection 
flux incorporated 
back in i-reserve 

_____ 0.9 This study 

𝑻𝑨 Arrhenius 
temperature 

K 6314.3 This study 

𝑻𝟎 Reference 
temperature 

K 293.15 DEB theory 
standard 

𝑻𝑯 Upper boundary of 
temperature tolerance 

K 286.536 This study 

𝑻𝑳 Lower boundary of 
temperature tolerance 

K 273.15 This study 

𝑻𝑨𝑯 Arrhenius 
temperature outside 
TH 

K 18702 This study 

𝑻𝑨𝑳 Arrhenius 
temperature outside 
TL 

K 4391.9 This study 

𝝎𝑽 Molar weight of 
structure 

g mol–1 29.89 C:H:O:N; 1: 
1.33:1:0.04 

𝝎𝑬𝑪 Molar weight of C 
reserve 

g C mol C–1 30 C:H:O:N; 
1:0.5:2.5:0 

𝝎𝑬𝑵 Molar weight of N 
reserve 

g N mol N–1 17 C:H:O:N; 
0:1.5:1.5:1 

𝝎𝑶𝟐 Molar weight of O2 g O2 mol O2
–1 32 Periodic 

Table 
 
Table 2. Model equations with environmental conditions: T = temperature (K), I = 
irradiance (μE m-2 h-1), DIC = dissolved inorganic carbon (mol DIC L-1), and N = 
nitrate and ammonium concentration (NO3- and NH4+ L-1). 
Equation Equation description 
𝑪𝑻 = 	𝒆𝒙𝒑 H𝑻𝑨

𝑻𝟎
− 𝑻𝑨

𝑻
J K𝟏 + 𝒆𝒙𝒑 H𝑻𝑨𝑳

𝑻𝟎
− 𝑻𝑨𝑳

𝑻𝑳
J + 𝒆𝒙𝒑H𝑻𝑨𝑯

𝑻𝑯
−

𝑻𝑨𝑯
𝑻𝟎
JN K𝟏 + 𝒆𝒙𝒑 H𝑻𝑨𝑳

𝑻
− 𝑻𝑨𝑳

𝑻𝑳
J + 	𝒆𝒙𝒑 H𝑻𝑨𝑯

𝑻𝑯
− 𝑻𝑨𝑯

𝑻
JN
O𝟏

  

temperature correction 

�̇�𝑬𝑵𝑨 = �̇�𝑬𝑵𝑨𝒎 ∗ 𝑪𝑻 ∗ [𝐍]/([𝐍] + 𝑲𝑵) specific assimilation 
rate of N 

�̇�𝑪𝑶𝟐 	= 	 (�̇�𝑪𝑶𝟐𝒎 ∗ 𝑪𝑻) ∗ (	[𝐃𝐈𝐂]/	[𝐃𝐈𝐂] + 𝑲𝑪)) specific CO2 uptake rate 
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�̇�𝑰 =
𝝆𝑷𝑺𝑼 ∗ 𝑰 ∗ 	 �̇�𝑰

𝟏 + 𝑰 ∗ 	 �̇�𝑰
�̇�𝑰 ∗ 𝑪𝑻

 
specific relaxation rate 

�̇�𝑶𝟐 =
�̇�𝑰 ∗ 𝑴𝑽 ∗ 𝝎𝑶𝟐

	𝑩 ∗ 𝟒  
oxygen production rate 

�̇�𝑬𝑪𝑨 = (
𝟏

�̇�𝑬𝑪𝑨𝒎 ∗ 𝑪𝑻
+

𝟏
�̇�𝑪𝑶𝟐/𝒚𝑪𝑶𝟐𝑪

+
𝟏

�̇�𝑰/𝒚𝑰𝑪

−
𝟏

�̇�𝑰/𝒚𝑰𝑪 + �̇�𝑪𝑶𝟐/𝒚𝑪𝑶𝟐𝑪
)O𝟏 

specific assimilation 
rate of C 

𝒋𝑬𝒊𝑪 = 𝒎𝑬𝒊]𝒌𝑬^̇ ∗ 𝑪𝑻) − �̇�` specific catabolic flux 
of N or C reserve 

�̇� =
𝟏
𝑴𝑽

𝒅𝑴𝑽

𝒅𝒕  
net specific growth rate 

�̇�𝑬𝒊
𝑴𝒊 	= 𝐦𝐢𝐧	]𝒋𝑬𝒊𝑪, (𝒋𝑬𝒊𝑴 ∗ 𝑪𝑻)` specific flux for 

metabolism from N or C 
reserve 

𝒋𝑬𝒊𝑮 = 	 𝒋𝑬𝒊𝑪 − 𝒋𝑬𝒊
𝑴𝒊 specific growth flux 

from N or C reserve 
If				�̇�𝑬𝒊

𝑴𝒊 < 	 𝒋𝑬𝒊𝑴 ∗ 𝑪𝑻	

𝒋𝑽𝑴 =k𝒋𝑽𝒊
𝑴𝒊

𝒊

=kKH(𝒋𝑬𝒊𝑴 ∗ 𝑪𝑻) − 𝒋𝑬𝒊
𝑴𝒊J𝒚𝑬𝒊𝑽

O𝟏N
𝒊

 

specific maintenance 
flux from structure 

𝒋𝑽𝑮 = �̇� + 𝒋𝑽𝑴 = lkm
𝒋𝑬𝒊𝑮
𝒚𝑬𝒊𝑽

n
O𝟏

𝒊

− ok
𝒋𝑬𝒊𝑮
𝒚𝑬𝒊𝑽𝒊

p
O𝟏

q

O𝟏

 
specific gross growth 
rate 

𝒋𝑬𝒊𝑹 = 𝒋𝑬𝒊𝑮 − 𝒚𝑬𝒊𝑽	 ∗ 𝒋𝑽𝑮 rejected specific C or N 
flux from growth SU 

𝒅
𝒅𝒕𝒎𝑬𝒊 = 	 𝒋𝑬𝒊𝑨 − 𝒋𝑬𝒊𝑪 + 𝜿𝑬𝒊 ∗ 𝒋𝑬𝒊𝑹 −	 �̇� ∗ 	𝒎𝑬𝒊 

dynamics of the N or C 
reserve 

𝒅
𝒅𝒕𝑴𝑽 		= �̇� ∗ 𝑴𝑽 

dynamics of structural 
mass 

𝑩=(𝝎𝑽 +	𝒎𝑬𝑪 ∗ 	𝝎𝑬𝑪 +	𝒎𝑬𝑵 ∗ 	𝝎𝑬𝑵) ∗ 𝑴𝑽 modeled kelp blade 
biomass 

𝑳=(
𝑩

𝟎. 𝟎𝟎𝟑𝟖𝟕)
( 𝟏
𝟏.𝟒𝟔𝟗) length in cm from an 

allometric relationship 
between length and dry 
weight from Gevaert et 
al. (2001) 
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Table 3. Data from literature and this study used to calibrate our sugar kelp DEB 
model. 
Reference Location Data Experimental 

conditions 
Time period 

Espinoza 
and 
Chapman 
(1983) 

Nova 
Scotia, 
Canada 

NO3- uptake 
(µg N gDW–1  
h–1) 

T° = 9 and 18 °C 
[N] = from 2.5 to 88 
µM NO3- 

Discrete 
measurements 
 

Johansson 
and Snoeijs 
(2002) 

Sweden Photosynthesis 
Rate 

T° = 14 °C 
I = 0-900 µE m-2 s-1 

Discrete 
measurements 
 

*Davison 
(1987) 
 
 

Germany Photosynthesis 
rates (µmol C 
g f. wt-1 h-1) 

T° = 0 to 30 °C with 5 
°C intervals 
I = 200 µE m-2 s-1 

Discrete 
measurements 

*Fortes and 
Lüning 
(1980) 

Germany Specific 
growth rate  
(% day-1) 

T° = 0, 5, 10, 15, and 
20 °C 
I = 70 µE m-2 s-1 

7 days 

*Bolton and 
Lüning 
(1982) 

Germany, 
UK, 
France, 
and 
Norway 

Specific 
growth rate (% 
day-1) 

T° = 0, 5, 10, 15, 20, 
and 23 °C 
I = 50 µE m-2 s-1  

7 days 

*Davison 
and Davison 
(1987) 

Germany Relative 
growth rate 
(cm cm-1 
month-1) 

T° = 0, 5, 10, 15 and 
20 °C 
I = 60 µE m-2 s-1 

1 month 

This study Rhode 
Island, 
USA 

Blade length 
(cm) and N:C 
ratio (mol 
mol–1) 

T° = 1.5-20 °C  
[N] = 7.65e-7-1.2e-5 M 
NO3- and NH3 
[C] = 1.836e-3 mol 
DIC/L at Pt. Judith 
Pond sites (J. Grear, 
unpublished data) and 
1.956e-3 mol DIC/L for 
Narragansett Bay sites 
(Segarra, 2002) 
I = 0-2e+6 daily µE m-2 
h-1 

2 seasons 
(2017-2018, 
and 2018-
2019) with 
kelp growth 
ranging from 
138 to 172 
days on the 
farm 

*Used only to build the Arrhenius relationship 
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Table 4. End of season length growth of kelp blades in cm (±SD) at each site. 
Season Nar. 

Bay N 
Nar. Bay 
S, L1 

Nar. 
Bay S, 
L2 

Pt 
Judith 
Pond N, 
L1 

Pt 
Judith 
Pond 
N, L2 

Pt 
Judith 
Pond 
S, L1 

Pt 
Judith 
Pond 
S, L2 

2017-
2018 

67.9 (± 
22.6) 

133.4 (± 
78.8) 

73.2 (± 
17.6) 

74.8 (± 
18.3) 

81.0 (± 
34.8) 

85.9 (± 
37.1) 

87.3 (± 
32.0) 

2018-
2017 

50.5 (± 
13.0) 

65.3 (± 
22.5) 

20.0 (± 
6.8) 

80.1 (± 
23.1) 

46.9 (± 
14.7) 

63.8 (± 
26.3) 

47.1 (± 
10.9) 
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8.  Figures 

 
Figure 1. Sugar kelp DEB model concept map based on Lorena et al. (2010) and 
Lavaud et al. (under review). The large oval represents the algae and the surrounding 
area is its environment. Rectangles with curved corners are the modeled inputs to the 
kelp. Rectangles with square corners are the state variables of the model, representing 
the main pools of mass in the modeled organism. Circles are synthesizing units. 
Dotted arrows represent fluxes of mass leaving the main model system either through 
excretion or use in maintenance. Grey arrows depict where the temperature correction 
is applied to a parameter of the model. 
 

 
Figure 2. Sugar kelp was grown on RI oyster farms at the black triangles for this 
study. 
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Figure 3. Irradiance forcing used for the 2017-2018 kelp season (top row) and the 
2018-2019 kelp season (bottom row) from converted from the radiative forcing from 
the North American Regional Reanalysis. 
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Figure 4. The Arrhenius relationship for S. latissima was estimated using multiple 
growth and photosynthesis datasets: 1) Bolton and Lüning (1982) (squares; black for 
kelp from France, dark grey for Norway, light grey for Germany, white for the UK), 2) 
Fortes and Lüning (1980) (diamond), 3) Davison and Davison (1987) (asterisk), and 4) 
Davison (1987) (circles; black for sporophyte rearing temp 0°C, dark grey for 5°C, 
dark grey with black border for 10°C, light grey for 15°C, and white for 20°C). The 
adjusted R-squared statistic for the fit of the curve to the data points is 0.551 (p-value 
= 2.74e-11). 
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Figure 5. Modeled (lines) and observed (dots) nitrate (and ammonium, only in model) 
uptake from Espinoza and Chapman (1983). Black depicts the uptake at 9°C and grey 
illustrates the uptake at 18°C. The RMSE for the model calibrated to the 9°C data is 
1.43e-06 and 9.73e-07 (both mol N gDW-1 h-1) for the model calibrated to the data 
collected at 18°C. 
 

 
Figure 6. Modeled (lines) and observed (dots) oxygen production from Johansson and 
Snoeijs (2002). The RMSE for the fit of this model curve to this data is 0.000457 (g 
O2 g DW-1 h-1). 
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Figure 7. Temperature (°C) field data from the 2017-2018 kelp season (A) and the 
2018-2019 kelp season (B). Temperature correction factor calculated using the 
Arrhenius equation and temperature field data from the 2017-2018 kelp season (C) 
and the 2018-2019 kelp season (D). 
 

 
Figure 8. Nitrate and ammonium concentration forcing data used for the 2017-2018 
kelp season (A) and the 2018-2019 kelp season (B) from field data points. 
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Figure 9. Saccharina latissima blade length growth (cm) from the 2017-2018 growing 
season (top row) and the 2018-2019 growing season (bottom row). Dots with error 
bars depict the mean length from the field data and the standard deviation. The lines 
are the prediction of the S. latissima DEB model. Lines and dots in black are the first 
kelp line planted at a site, and those in grey depict the second kelp line planted later in 
the year.  
 

 
Figure 10. Regression plot of observed versus simulated S. latissima length (cm) for 
all sites in (A) 2017-2018 season and (B) 2018-2019 season. Error bars show standard 
deviation. The black diagonal line shows the one to one relationship between observed 
and simulated length. 
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Figure 11. Sensitivity of 𝒎𝑬𝑪, 𝒎𝑬𝑵, and 𝑴𝑽 to model parameters using the L1 
sensitivity function. 
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SUPPORTING INFORMATION 
 
Appendix S1: Model Initial Conditions and Molecular Weights 
 
Table S1a. Initial conditions used in all model runs for the Rhode Island field data. 
Carbon 
reserve 
density (𝒎𝑬𝑪) 
(mol EC / mol 
𝑴𝑽) 

Nitrogen reserve 
density (𝒎𝑬𝑵) 
(mol EN / mol 
𝑴𝑽) 

Mass of 
structure 
(𝑴𝑽) (g) 

Blade 
biomass 
dry weight 
(B) (g) 

Blade 
Length (L) 
(cm) 

0.1 0.03 0.00009 0.003006 0.8419928 
 
Table S1b. Molecular weights. 
Molecular weight 
of structure (𝝎𝑽) 
(g/mol) 

Molecular weight 
of nitrogen 
reserve (𝝎𝑬𝑵) 
(g/mol) 

Molecular weight 
of carbon reserve 
(𝝎𝑬𝑪) (g/mol) 

29.89 17 30 

 

Initial reserve densities were set based on the knowledge that the carbon 

reserve would occupy a larger amount of mass in comparison to the nitrogen reserve at 

the starting time of the study. Initial blade lengths and biomass were set together using 

the Gevaert et al. (2001) power relationship to set a length similar to that of the 

sporophytes on the day they were planted out on the farms. Initial mass of structure 

was set to calculate the chosen initial blade biomass. The molecular weights used in 

this biomass calculation were calculated from assumed C:H:O:N chemical 

compositions and the associated atomic masses of these elements. The nitrogen 

reserve’s chemical composition is ammonia, the carbon reserve’s chemical 

composition is glucose, laminarin, and mannitol, and the structure’s chemical 

composition is the average of mannitol and laminarin. Because structure is also 

composed of a significant amount of proteins, we set the structure chemical index for 

N to 0.04. 
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Appendix S2: Model Equation Descriptions 
 
 A temperature correction (CT) is applied to all modelled rates expect for the 

photon binding rate (�̇�-) (Lorena et al., 2010, Lavaud et al., under review). Arrhenius 

relationships are based on the idea that metabolic rates of a species are impacted the 

same amount by temperature change (Kooijman, 2010). This correction is an extended 

Arrhenius correction factor; the extension supports a non-linear response to 

temperature change: 

𝑪𝑻 = 	𝒆𝒙𝒑 y
𝑻𝑨
𝑻𝟎

−
𝑻𝑨
𝑻 z

{𝟏 + 𝒆𝒙𝒑 y
𝑻𝑨𝑳
𝑻𝟎

−
𝑻𝑨𝑳
𝑻𝑳
z + 𝒆𝒙𝒑 y

𝑻𝑨𝑯
𝑻𝑯

−
𝑻𝑨𝑯
𝑻𝟎

z| {𝟏 + 𝒆𝒙𝒑 y
𝑻𝑨𝑳
𝑻 −

𝑻𝑨𝑳
𝑻𝑳
z + 	𝒆𝒙𝒑 y

𝑻𝑨𝑯
𝑻𝑯

−
𝑻𝑨𝑯
𝑻 z|

O𝟏

 

 
With TA the Arrhenius temperature, T0 the reference temperature, T is the field 

or input temperature, TL and TH the lower and higher bounds of temperature tolerance, 

and TAL and TAH the Arrhenius temperatures for the lower and higher temperatures 

outside the optimal range (all in K). 

In this model, rates (variables with dotted letters) are expressed per C-mol of 

structure. The specific assimilation rate of nitrate and ammonium (𝐽~̇�� in mol N mol 

MV-1 h-1) is calculated through a Michaelis-Menten relationship: 

�̇�𝑬𝑵𝑨 = �̇�𝑬𝑵𝑨𝒎 ∗ 𝑪𝑻 ∗ [𝑵]/([𝑵] + 𝑲𝑵) 

With 𝐽~̇���	maximum volume specific nitrogen assimilation (mol N mol MV-1 h-1), 

[N] the concentration of ammonium and nitrate in the environment (NO3- and NH4+ L-

1), and KN half-saturation concentration for NO3- and NH4+ uptake (mol NO3- and 

NH4+ L-1). 

Both carbon and nitrogen assimilation are described as synthesizing units 

(SUs) in DEB theory. SUs are a simple way to depict conversions of mass from one 

state to another within an organism. They function under rules similar to classic 
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enzyme kinetics with a major difference being the assumption of low substrate-

enzyme dissociation rates (Kooijman, 2010). SUs allow for dynamic substrate 

limitation and flexible computation. For carbon dynamics in particular three linked 

SUs model the different parts of photosynthesis. One of these SUs facilitates the 

uptake of carbon dioxide. The specific CO2 uptake rate (𝐽�̇�� in mol CO2 mol MV-1 h-1) 

is calculated through a Michaelis-Menten relationship similarly to 𝐽~̇�� in this model: 

�̇�𝑪𝑶𝟐 	= 	 (�̇�𝑪𝑶𝟐𝒎 ∗ 𝑪𝑻) ∗ (	[𝑫𝑰𝑪]/	[𝑫𝑰𝑪] + 𝑲𝑪)) 

With 𝐽�̇���	maximum volume specific CO2 uptake rate (mol CO2 mol MV-1 h-1), [DIC] 

the concentration of dissolved inorganic carbon (mol DIC L-1), and KC half-saturation 

concentration for CO2 uptake (mol DIC L-1). Bicarbonate is converted to carbon 

dioxide by carbonic anhydrase, so this is why the forcing is DIC and what is being 

taken in is CO2. 

 Another of the photosynthesis SUs depicts the light-dependent reactions of 

photosynthesis. In this equation, photons are bound to photosystems and ATP and 

NADPH are produced and released at set rates. The specific relaxation rate (𝐽-̇ in mol 

NADPH mol MV
–1 h–1) is given by: 

�̇�𝑰 =
𝝆𝑷𝑺𝑼 ∗ 𝑰 ∗ 	 �̇�𝑰

𝟏 + 𝑰 ∗ 	 �̇�𝑰
�̇�𝑰 ∗ 𝑪𝑻

 

With 𝜌()*	photosynthetic unit (PSU) density (mol PSU mol MV-1), I forcing function 

irradiance (μE m-2 h-1), �̇�- photon binding rate (unitless), and �̇�-	dissociation rate of 

releasing ATP and NADPH+ (mol NADPH mol PSU-1 h-1). 

 The final SU of the carbon dynamics integrates the inputs of the previous two 

SUs and assimilates carbon to its reserve. This part of the photosynthesis model 
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represents the Calvin-Benson cycle during which carbohydrates are formed from 

carbon dioxide. The specific assimilation rate of C (𝐽~̇�� in mol C mol MV-1 h-1) is 

calculated through the parallel processing of NADPH and CO2: 

�̇�𝑬𝑪𝑨 = (
𝟏

�̇�𝑬𝑪𝑨𝒎 ∗ 𝑪𝑻
+

𝟏
�̇�𝑪𝑶𝟐/𝒚𝑪𝑶𝟐𝑪

+
𝟏

�̇�𝑰/𝒚𝑰𝑪
−

𝟏
�̇�𝑰/𝒚𝑰𝑪 + �̇�𝑪𝑶𝟐/𝒚𝑪𝑶𝟐𝑪

)O𝟏 

With 𝐽~̇��� maximum volume specific carbon assimilation (mol C mol MV-1 h-1), 

𝑦����  yield factor of C reserve to CO2 (mol CO2 mol EC-1), and 𝑦-�	 yield factor of C 

reserve to NADPH (mol NADPH mol EC-1). 

 Oxygen is produced as a byproduct of the reduction of NADP+, and one mole 

of O2 is produced for every four moles of NADPH produced. Calculating the oxygen 

production rate (𝐽�̇� in g O2 g biomass-1 h-1) is a useful equation in this model to 

provide comparisons to literature data to calibrate the photosynthesis parameters: 

�̇�𝑶𝟐 =
�̇�𝑰 ∗ 𝑴𝑽 ∗ 𝝎𝑶𝟐

	𝑩 ∗ 𝟒  

With MV structural mass (mol MV), 𝜔�� molar weight of O2 (g O2 mol O2–1), 

and B is modeled kelp blade biomass (g). 

 Reserves are catabolized to send mass on to be used in growth or maintenance. 

The specific catabolic flux of the N or C reserves (𝑗~��  in mol EN or EC molMV-1 h-1) 

follows first order kinetics, which means that as the carbon or nitrogen reserve density 

(𝑚~� in mol EN or EC mol MV-1) increases the faster catabolism will occur: 

𝒋𝑬𝒊𝑪 = 𝒎𝑬𝒊]𝒌𝑬^̇ ∗ 𝑪𝑻) − �̇�` 

With 𝑘~�̇  carbon or nitrogen reserve turnover rate (h-1) and �̇� net specific growth rate 

(h-1):  
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�̇� =
𝟏
𝑴𝑽

𝒅𝑴𝑽

𝒅𝒕  

 �̇� is modified at each timestep using a function modified from the DEBtool 

package’s function called sgr2.m in the alga section 

(https://www.bio.vu.nl/thb/deb/deblab/debtool/DEBtool_M/manual/index.html). The method 

that underlies this function is the Newton-Raphson method with continuation. 

Maintenance takes priority over growth for catabolized resources in DEB 

theory. The specific flux for metabolism from the N or C reserves (𝐽~̇�
�� in mol EN or 

EC mol Mv-1 h-1) is set by the temperature corrected volume-specific maintenance cost 

paid by N or C reserve (𝑗~�� in mol EN or EC mol Mv-1 h-1) if the catabolic flux is 

enough to meet those costs: 

�̇�𝑬𝒊
𝑴𝒊 	= 𝐦𝐢𝐧	]𝒋𝑬𝒊𝑪, (𝒋𝑬𝒊𝑴 ∗ 𝑪𝑻)` 

The specific growth fluxes from both N and C reserves (𝑗~��  in mol EN or EC 

mol Mv-1 h-1) sent to the growth SU contain any mass left after maintenance costs are 

filled: 

𝒋𝑬𝒊𝑮 = 	 𝒋𝑬𝒊𝑪 − 𝒋𝑬𝒊
𝑴𝒊 

If maintenance requirements not met by the catabolic fluxes from the reserves, 

maintenance costs will be met by drawing from structure. The specific maintenance 

flux from structure (𝑗�� in mol N and C mol Mv-1 h-1) is given by: 

𝒋𝑽𝑴 =k𝒋𝑽𝒊
𝑴𝒊

𝒊

=kKH(𝒋𝑬𝒊𝑴 ∗ 𝑪𝑻) − 𝒋𝑬𝒊
𝑴𝒊J𝒚𝑬𝒊𝑽

O𝟏N
𝒊

 

With 𝑦~��	yield factor of N reserve or C reserve to structure (mol EN or EC mol Mv-

1). 
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 The growth SU handles growth fluxes from both reserves complementarily, so 

the specific gross growth rate (𝑗��  in h-1) is given by: 

𝒋𝑽𝑮 = �̇� + 𝒋𝑽𝑴 = lkm
𝒋𝑬𝒊𝑮
𝒚𝑬𝒊𝑽

n
O𝟏

𝒊

− ok
𝒋𝑬𝒊𝑮
𝒚𝑬𝒊𝑽𝒊

p
O𝟏

q

O𝟏

 

 Either the amount of carbon or nitrogen available will limit the growth SU, so 

excess will be available for one of the compounds. The model can reject this excess 

material as binding sites are filled and return it to the respective reserve. This rejected 

specific C or N flux from growth SU (𝑗~�� in mol Ei mol MV-1 h-1) is the difference 

between available growth flux and what is actually used for growth: 

𝒋𝑬𝒊𝑹 = 𝒋𝑬𝒊𝑮 − 𝒚𝑬𝒊𝑽	 ∗ 𝒋𝑽𝑮 

 The dynamics of the state variables are the main differential equations of the 

model. The dynamics of the N or C reserve densities balance the inputs of assimilation 

and returning rejected flux with the outputs of catabolism and dilution by growth: 

𝒅
𝒅𝒕𝒎𝑬𝒊 = 	 𝒋𝑬𝒊𝑨 − 𝒋𝑬𝒊𝑪 + 𝜿𝑬𝒊 ∗ 𝒋𝑬𝒊𝑹 −	 �̇� ∗ 	𝒎𝑬𝒊 

With 𝜅~�	fraction of rejection flux incorporated in i-reserve (unitless). 

The dynamics of structural mass are controlled by the net specific growth rate: 

𝒅
𝒅𝒕𝑴𝑽 		= �̇� ∗ 𝑴𝑽 

Modeled kelp blade biomass (dry weight) is calculated by summing the mass 

of the reserves and the structure in the model: 

𝑩=(𝝎𝑽 +	𝒎𝑬𝑪 ∗ 	𝝎𝑬𝑪 +	𝒎𝑬𝑵 ∗ 	𝝎𝑬𝑵) ∗ 𝑴𝑽 

With 𝝎𝑽 molar weight of structure (g mol–1), 𝝎𝑬𝑪	molar weight of C reserve (g C mol 

C–1), and 𝝎𝑬𝑵	molar weight of N reserve (g N mol N–1). 
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Kelp blade length (cm) is calculated using an allometric relationship between 

length and dry weight from Gevaert et al. (2001): 

𝑳=
𝑩

𝟎. 𝟎𝟎𝟑𝟖𝟕

𝟏
𝟏.𝟒𝟔𝟗
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Appendix S3: Field Season Information 
 
Table S3. Dates of kelp planting out on each farm site and harvest for both of the field 
seasons. 
Season Nar. 

Bay N 
Nar. 
Bay S, 
L1 

Nar. 
Bay S, 
L2 

Pt 
Judith 
Pond 
N, L1 

Pt 
Judith 
Pond 
N, L2 

Pt 
Judith 
Pond 
S, L1 

Pt 
Judith 
Pond 
S, L2 

2017-
2018: 
Plant 
Date 

12/4/17 11/1/17 12/6/17 11/1/17 11/29/17 11/1/17 11/29/17 

2017-
2018: 
Harvest 
Date 

4/21/18 4/21/18 4/21/18 4/17/18  4/17/18 4/22/18 4/22/18 

2018-
2019: 
Plant 
Date 

12/19/18 12/20/18 2/21/19 12/12/18 2/6/19 12/12/18 2/6/19 

2018-
2019: 
Harvest 
Date 

5/23/19 5/24/19 5/24/19 5/3/19 5/3/19 5/3/19 5/3/19 
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Appendix S4: Calculating Photosynthetically Active Radiation from Net 
Shortwave Radiation 
To calculate PAR photosynthetically active radiation (µmol photons/m2/h) from data 

from the North American Regional Reanalysis (Mesinger et al., 2006), we used this 

equation: 

PAR = NSW*PAR_frac*C*exp(-k*z)*3600 

With NSW net shortwave radiation (W/m2) at the water surface calculated from 

downward shortwave flux minus upward shortwave flux, PAR_farc fraction of the 

incident flux useable for photosynthesis (unitless), C a conversion factor (µmol 

photons/s/W), k extinction coefficient (m-1), z depth (m), and 3600 to convert from per 

second to per hour. C is a standard 4.56 (µmol photons/s/W) (Mõttus et al., 2011). We 

used a PAR_frac of 0.43 (Mõttus et al., 2011). We used 0.46 m-1 for k from past work 

in Narragansett Bay (Ullman & Codiga, 2010).  
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Appendix S5: Plots Related to Internal Model Dynamics 
 

 
Figure S5a. Modeled carbon rejected flux from the carbon reserve for kelp lines from 
the 2017-2018 growing season (top row) and the 2018-2019 growing season (bottom 
row). Darker grey is for the north lines and the lighter grey is for the south lines. A) 
and C) are Narragansett Bay N and S and B) and D) are Pt. Judith Pond N and S. 
 
 

 
Figure S5b. Modeled rejected specific N flux from the growth synthesizing unit for 
kelp lines from the 2017-2018 growing season (top row) and the 2018-2019 growing 
season (bottom row). Darker grey is for the north lines and the lighter grey is for the 
south lines. A) and C) are Narragansett Bay N and S and B) and D) are Pt. Judith Pond 
N and S. 
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Figure S5c. Modeled specific relaxation rates for kelp lines from the 2017-2018 
growing season (top row) and the 2018-2019 growing season (bottom row). Darker 
grey is for the north lines and the lighter grey is for the south lines. A) and C) are 
Narragansett Bay N and S and B) and D) are Pt. Judith Pond N and S. 
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Figure S5d. Modeled carbon assimilation rates for kelp lines from the 2017-2018 
growing season (top row) and the 2018-2019 growing season (bottom row). Darker 
grey is for the north lines and the lighter grey is for the south lines. A) and C) are 
Narragansett Bay N and S and B) and D) are Pt. Judith Pond N and S. 
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