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A B S T R A C T   

The global demand for clean products obtained from biobased resources has increased significantly with the 
rapid growth of the world’s population. In this context, microbially-produced compounds are highly attractive 
for their safety, reliability, being environment friendly and sustainability. Nevertheless, the cost of the carbon 
sources required for such approaches accounts for greater than 60% of the total expenses, which further limits 
the scaling up of industries. In recent years, algae have been used in numerous industrial areas because of their 
rapid growth rate, easy cultivation, ubiquity and survival in harsh conditions. Over the past decade, notable 
advances have been observed in the extraction of high-value compounds from algae biomass (ABs). However, 
few studies have investigated ABs as green substrates for microbial conversion into value-added products. This 
review presents the potential of ABs as the substrates for microbial growth to produce industrially-important 
products, which sheds light on the importance of the symbiotic relationship between ABs and microbial spe-
cies. Moreover, the successful algal-bacterial gene transformation paves the way for accommodating green 
technology advancements. With the escalated need for natural pigments, biosurfactants, natural plastics and 
biofuels, ABs have been new resources for microbial biosynthesis of these value-added products, resolving the 
problem of high carbon consumption. In this review, the fermentative routes, process conditions, and accessi-
bility of sugars are discussed, together with the related metabolic pathways and involved genes. To conclude, the 
full potential of ABs needs to be explored to support microbial green factories, producing novel bioactive 
compounds to meet global needs.   

1. Introduction 

Owing to the exponential growth of the global population, the de-
mand for energy, food, pure water, medicines and other essential ma-
terials has been increased dramatically [1]. Among these resources, 
bioproducts have had a boom in the global industry over the past two 
decades because of their excellent adaptability and durability. Bio-
products are biologically produced from a wide variety of substrates, 
including various wastes generated from the agriculture sector [2], food 
industry [3], chemicals industry [4], and pharmaceuticals industry [5]. 
The increasing awareness and demand for green products are forcing the 
members of industrial channels to modify marketing strategies for more 

economical options. Nevertheless, commercialization of the biobased 
products with reasonable affordability is still at an immature stage. 

Being abundant in nature with attractive compositions, algae have 
received significant interest in various industrial sectors as promising 
starting materials for producing high-value materials [6]. Algae are 
attractive feedstocks since they do not require arable land, can reme-
diate the nutrient-rich wastewater [7], maximize biomass usage, have 
low operating costs, use less energy and produce sustainable bio- 
chemicals [8–10]. Also, algae may generate more than 50 times the 
biomass of switchgrass, the fastest-growing terrestrial plant [8]. The 
ability to produce algal biomass in wastewater is another good techno-
logical capability in the production of algal biomass [11]. Furthermore, 
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certain halophilic, halotolerant, and halo-adapted algal species that may 
be farmed in marine or saltwater have recently been described for sus-
tainable biofuel generation [8]. In spite of these numerous merits, few 
studies have investigated ABs as affordable microbial feedstock to meet 
the growing need for bioproducts with lesser cost [9]. It is noteworthy 
that algae have a wide range of carbohydrate contents with low lignin 
levels, satisfying multiple microbial synthesis strategies [8]. Thus, the 
carbohydrate composition of ABs is crucial for their successful use as 
carbon sources in the development of novel bioproducts within micro-
bial factories [9]. 

Microbial synthesis is highly advantageous in the industrial imple-
mentation of bio-based products. It eliminates the use of heavy metals, 
organic solvents, and strong acids and bases, allowing the synthetic 
process to adopt a more ecologically friendly path [12]. Also, microbial 
enzymes often have a very high substrate selectivity, which aids in the 
reduction of byproduct generation. Furthermore, microbial metabolic 
engineering provides an increased yield and productivity of a target 
compound, whereas combinatorial biosynthesis allows for the produc-
tion of new compounds derivatives [13]. 

One of the most critical macromolecules in biotechnological, phar-
maceutical and medical applications are multi-functional sulfated 
polysaccharides (SPSs) [14]. The enhancement of these compounds’ 
productivity usually occurs through “algal-bacterial symbiosis”. From 
another perspective, some Gram-negative bacterial strains such as 
Nonlabens ulvanivorans and Alteromonas sp. have shown a profound 
capability to use green algae in batch and fed-batch fermentation ap-
proaches, producing valuable microbial enzymes such as ulvan lyase 
[15]. Also, numerous microbial strains could ferment AB, producing 
butyric acid and kainic acid [16,17]. Red seaweed hydrolysates and 
other seaweeds have been suitable substrates for lactic acid bacteria 
yielding lactic acid to develop biodegradable polylactic acid materials 
[18]. In addition, the greenly-developed bioplastic materials, which are 
only produced by bacterial cells, are contemplated as more promising 
substitutes of non-biodegradable plastics. The industrialization of the 
energy or carbon sources needed for such fermentative approaches 
would address the concern of global plastic waste [9]. On another 
avenue, the high demands for clean labels, healthy lifestyles, strict 
legislation, and advanced technology urge replacing the synthetic col-
oring agent with natural sources. The global market for natural pigments 
in the food industry alone is expected to reach USD 1.7 billion by 2025 
[19]. Microbial pigments have been proved to be safe due to their non- 
carcinogenic, non-toxic and biodegradable in nature properties. In this 
intellect, brown algae hydrolysates have served as beneficial fermenta-
tion media for cultivating different fungi and microbial species for the 
biosynthesis of natural colorants using solid-state fermentation (SSF) 
[20]. Finally, microalgal support produces one of the most important 
biofuels for future energy security and clean energy like bioethanol [21]. 
When it comes to using microbial cells as biofuel reservoirs, no extensive 
land use is needed, ensuring food security in the coming years [22]. 

This is the first review paper presenting ABs as microbial substrates 
for the production of various bioproducts rather than extracting such 
promising compounds from algal seaweeds directly. The main aim of 
this review is to provide an overview of the AB hydrolysates, juices, and 
powders as sustainable substrates for the generation of nine industrially 
valuable products, including sulfated polysaccharides (SPSs), ulvan 
lyase, butyric acid, kainic acid, lactic acid, polyhydroxyalkanoates 
(PHAs), biosurfactants, natural colorants, and bioethanol. Microbial 
utilization of AB simulation media, metabolic pathways, fermentation 
conditions, and involved genes are discussed. Furthermore, microbial 
producers of each compound, isolation sites, carbohydrate sources, and 
productivities are summarized and compared. Finally, the major tech-
noeconomic challenges, potential prospects and future research needs 
are highlighted. 

2. Bio-polymers produced by algal biomass utilization 

2.1. Sulfated polysaccharides (SPSs) 

SPSs are a broad collection of anionic polymers found in various 
organisms ranging from algae to mammals but not in soil plants. SPSs 
are considered as a physiological adaptation of marine organisms such 
as algae, marine invertebrates, and seagrasses to the high ionic force in 
the marine environment [23]. SPSs are economically valuable natural 
compounds generated by marine algae [24]. They play important 
functions in biology, either as tissue structural components or as 
signaling molecules in physiological processes [25]. They have been 
shown to exhibit a variety of potential properties, including anti-cancer, 
anti-oxidative, anti-radiation, anti-viral, and immunoregulatory prop-
erties [26]. As a result, SPSs are widely utilized in the cosmetic, chem-
ical, biopharmaceutical, and nutraceutical industries. SPSs are the key 
components of the cell walls of seaweeds, including brown (Phaeophy-
ceae), green (Chlorophyta), and red (Rhodophyta) marine macroalgae 
[27]. Algal SPSs are frequently complex and biosynthesized as hetero-
geneous combinations, with phylogenetic and environmental influences 
modulating composition and structure [28]. 

Several algae-derived SPSs, such as carrageenan (red algae), fucoi-
dan (brown algae), and ulvan (green algae), originate from macroalgae. 
Complex SPSs consist of different monomers of sugars such as fucose, 
galactose, rhamnose, and xylose [29,30]. While the commercialization 
of macroalgal SPSs has been successfully done, little consideration has 
been paid to SPSs originating from microalgae (Table 1), representing 
crucial alternatives to the former [31]. This importance is correlated to 
the high mass productivity of microalgae, their ability to thrive at a wide 
range of temperatures, easy cultivation procedures, and their contribu-
tion to producing numerous valuable products [31]. Generally, SPSs are 
resulted from a symbiotic relationship between algal species and other 
organisms [32]. Porphyridium cruentum is a red unicellular microalga 
that can produce huge quantities of SPSs. It secretes SPSs and creates 
capsules around the cells, protecting them from salinity, UV irradiation, 
temperature, and pH [33]. Both the Pseudoalteromonas MEBiC 03,607 
and MEBiC 03,485 bacterial strains were used to produce and examine 
SPS activity. The strain Pseudoalteromonas MEBiC03485 also enhanced 
P. cruentum SPS output and quality. The strains treatment group MEBiC 
03,485 exhibited greater SPS production and sulfur content than the 
control group by 5.92% and 20.0%, respectively. On the other hand, the 
strain MEBiC 03,607 treatment group, SPS generation, and sulfur con-
tent were 0.0841% and 2.87%, respectively, lower than the control 
group [34]. These findings are intriguing since the biological activity of 
SPS is directly connected to its sulfur concentration. Many studies have 
found a link between sulfate concentration, polysaccharide-protein 
interaction and antioxidant activity [25,35]. This indicates that sul-
phate levels, antioxidant activity and polysaccharide-protein in-
teractions are directly correlated. As a result, the most critical element 
determining the positive SPS characteristic is the sulfate (Sulphur) 
content [35]. However, the microbial symbiotic relationship can 
improve algal productivity and growth. Han et al. [34] indicated a novel 
symbiotic relationship between Pseudoalteromonas sp. MEBiC 03,485 
( psychrophilic, aerobic, Gram-negative marine bacterium) and 
P. cruentum. The bacterial strain MEBiC 03,485 promoted the algal 
growth, pigment content, SPSs production, and SPSs sulfur content. 
These improvements were found to be due to several bioactive com-
pounds excreted by MEBiC 03,485 strain, which were proven to improve 
the SPSs composition, enhancing their biological activity. In addition, 
these secretions were found to increase the phycocyanin and phycoer-
ythrin (photosynthetic pigments extracted from several algae) content 
to 161% and 89.4%, respectively [34]. 

2.2. Polyhydroxyalkanoates (PHAs) 

Plastic materials have attracted tremendous interest owing to their 
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diverse properties, such as thermal and high mechanical features, 
affordable cost and ease of biosynthesis. Researchers have chosen to 
explore bioplastics as potential alternatives to non-biodegradable plas-
tics in light of environmental issues connected to the widespread usage 
of plastics [44]. This is due to their biocompatibility, biodegradability, 
and friendly environmental production methods [45,46]. It was esti-
mated that 4.8–12.7 million tons of plastic wastes enter into the oceans 
each year from land, with an expected dramatic increase by 2025 if 
waste management does not improve (Fig. 1) [47]. PHAs have been 
discovered as potential replacements for non-biodegradable plastics 
[48]. These biobased plastics are intracellular and biodegradable poly-
esters produced by bacteria as a means of storing energy when cells are 
grown in an environment lacking nutrients such as nitrogen and phos-
phorus (Fig. 2). 

However, feed costs for PHAs production as estimated up to 45% of 
the total production cost have a negative impact on the economy of this 
bioprocess technology. As a result, researchers are looking for biowastes 
and affordable stocks to use as feeds for PHAs biosynthesis [49]. The 
most appropriate method for PHA storage is aerobic dynamic feeding 
[45]. However, the cost of highly purified substrates has curtailed the 

industrial production of PHAs using this process [50]. In this context, 
accumulated pieces of evidence have revealed the significance of using 
sustainable raw materials as substrates for microbial fermentation to 
reduce the cost of PHA production as summarized in Table 2, which 
include waste cooking oil [51], whey [46], wheat bran [52] and defatted 
Chlorella biomass [53]. In the search for promising feedstocks for PHAs 
production, ABs obtained from marine green, brown and red macroalgae 
have recently been reported to have potentials for commercial PHA 
synthesis because of their high carbohydrate content and absence of 
lignin. These properties of ABs help in recovering fermentable sugars 
without the requirement of any costly pretreatments. Dilute acid treat-
ment was found promising in converting algal carbohydrates into 
fermentable sugars among various methods at high temperatures, 
ranging from 120 to 220 ◦C [54,55]. 

Our research team [9] has recently investigated three seaweeds as 
the prospective alternative feedstocks for PHA production by Halomonas 
sp. through multiple production models to increase the polyester syn-
thesis output. Corallina mediterranea hydrolysates were used as C (car-
bon) and N (nitrogen) sources to determine the highest concentrations of 
poly (3-hydroxybutyrate) (PHB). After 72 h of incubation, H. pacifica 
ASL10 and H. salifodiane ASL11 developed high concentrations of 
polymer ranges of 2.8 and 3.0 g/L, respectively. While in the case of 
Spirulina sp. and Pterocladia capillacea hydrolysates media, the PHB 
accumulation ranged from 1 to 1.5 g/L [9]. However, strains ASL10 and 
ASL11 showed a PHA concentration of 3.5 and 3.7 g/L, respectively, 
after incubation at 37 ◦C for 72 h in media containing 2% (w/v) sucrose 
and 0.05% (w/v) (NH4)2SO4. The sucrose content and the accumulation 
of PHA have a positive correlation. Nicotinamide adenine dinucleotide 
hydride (NADH), Coenzyme A (CoA), and Nicotinamide adenine dinu-
cleotide phosphate (NADPH) effect in cell proliferation and PHA pro-
duction was considered as the main reason for this correlation. Because 
of their inhibitory impact on citrate synthase, high quantities of CoA 
inhibit PHA production, while excessive quantities of NADH decrease 
cell development. Furthermore, the presence of NADPH generally in-
creases the production of polyester (PHA) [74]. 

Laminaria japonica (brown algae) biomass was used in the culture of 
three distinct bacterial strains, including C. necator NCIMB 11599, 
Paracoccus sp. LL1, and B. megaterium ALA2, as an uncovered carbon 
source of PHA buildup. The ABs were prepared by acid hydrolysis using 
various concentrations of HCl or H2SO4. Under 2% reducing sugar 
supplementation, B. megaterium, C. necator and Paracoccus sp. were 
capable of producing PHA at a rate of 19–32% of their cell dry weight 
(CDW). PHA accumulation reached the highest level in C. necator (1.58 
g/L, or 32% of CDW) at 60 h owing to the high consumption of 
fermentable sugars in L. japonica acid hydrolysate. However, PHA con-
tent decreased after 60 h to 1.25 g/L [75] due to lack of nutrients forcing 
bacteria to consume PHA storage for cell growth [76]. Ghosh et al. [55] 
have utilized C source derived from macroalgae for regulating the syn-
thesis of PHAs from H. mediterranei. PHA synthesis was analyzed using 
hydrolysates from seven different macroalgal biomasses. There was a 
maximum biomass concentration with the highest PHA content in the 
medium prepared from Ulva sp. (green macroalgae). When 
H. mediterranei was grown in a media model of 25% (w/w) Ulva sp. 
hydrolysate with an initial pH of 7.2 and at 42 ◦C, the maximum CDW, 
and PHA concentrations were found to be 3.8 g/L and 2.2 g/L, respec-
tively [55]. Glucose was the most abundant monosaccharide in Ulva sp. 
hydrolysate, followed by rhamnose and galactose [77]. The increased 
PHA content in the Ulva sp. synthetic medium might be attributed to the 
higher glucose concentration compared to other hydrolysates. The pH 
value at the end of Ulva sp. culture was 5.12, which is relatively low as 
compared to the beginning value of 6.8. As a result, it was considered 
that a decline in pH value resulted in adverse growth circumstances, 
which finally resulted in growth and nutrient uptake inhibition [55]. 

Table 1 
Summary on sulfated polysaccharides (SPSs) production by several algal species.  

SPSs Algal Biomass 
source 

Extraction 
conditions 

Product 
yield 

Reference 

Xylogalactoarabinans Cladophora 
falklandica 
(Green 
seaweed) 

Sequential 
extraction with 
alcohol at room 
temperature (RT) 
and 90 ◦C. 

Max. 
29.2% 

[36] 

Carrageenan Eucheuma 
cottonii(Red 
seaweed) 

With KOH at a 
concentration of 
0.4 N 

42% [37] 

Kappaphycus 
alvarezii(Red 
seaweed) 

With pre-heated 
potassium 
hydroxide (6 % 
KOH) solution for 
30 min 

69.9 ±
4.8% 

[38] 

Eucheuma 
denticulatum 
(Red 
seaweed) 

With water at 
99 ◦C for 1.5 h. 

35.5 ±
2.12 

[39] 

Chondrus 
crispus(Red 
seaweed) 

With at 85 ◦C for 
30 min, grinding 
with a 
homogenizer, kept 
at 85 ◦C for 4 h, 
precipitation of 
polysaccharides 
with cold ethanol. 

37.4 ±
1.68% 

[40] 

Sarcothalia 
crispate(Red 
seaweed) 

Mechanical 
stirring with water 
for 16 h at RT, 
dialyzing and 
concentrating the 
supernatant. 

20.5 g [41] 

Gigartina 
skottsbergii 
(Red 
seaweed) 

15.0 g 

Fucoidan Sargassum 
binderi Sonder 
(Brown 
seaweed) 

Extraction with 
0.1 N HCl, stirred 
at RT for 6 h, 
addition of CaCl2 

(2%), 
centrifugation for 
15 min, treatment 
of filtrate with 
ethanol (1:2), and 
dialyzed in 0.5 M 
NaCl. 

18.74% [42] 

Fucus 
vesiculosus 
(Brown 
seaweed) 

Percolation with a 
5% ethanol, pH 4, 
ultrasonic 
treatment. 

10 ± 2% [43]  
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Fig. 1. The dramatic increase of waste accumulation problem illustrates (a) mismanaged plastic waste by region, (b) the amount of produced plastic waste according 
to the waste source, and (c) the general amount of plastic waste and estimation from 1950 to 2030. 

Fig. 2. Schematic illustration of scaling-up batch fermentation and polyester recovery.  
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Table 2 
Microbial production of PHAs from various wastes.  

Production organism Isolation site Main carbon source PHA titer(g/L) Reference 

R. eutropha H16 (DSM-428) Sludge Plant oils  1.65 [56] 
Pseudomonas putida LS46 Sewage sludge Glucose  28.8 [57] 
Haloferax mediterranei DSM1411 Solar salt pond Whey  1.18 [58] 
R. eutropha H16 Sludge Digestate chicken manure + waste 

sunflower oil  
4.6 [59] 

Bacillus cereus NT-3 Municipal solid waste 
leachate 

Volatile fatty acidsfrom food waste  0.42 [60] 

Clostridium beijerinckii ASU10 Cultivated soil Glycerol  0.42 [61] 
Sugarcane molasses  0.33 

Bacillus megateriumTi3 Soil Xylose  1.08 [62] 
Glucose  0.78 
Arabinose  0.67 
Corn husk hydrolysate  1.0 

Pseudomonasputida NX-1 Leaf mold Lignin  0.11 [63] 
Schlegelella thermodepolymeransDSM 15,344 Activated sludge Glucose  1.24 [64] 

Mannose  0.3 
Galactose  0.54 
Fructose  1.0 
Lactose  1.32 
Sucrose  0.49 
Xylose  2.85 
Arabinose  0.40 
Glycerol  1.67 
Waste frying oil  0.01 

Acinetobacter juniiBP 25 Rice mill effluent Rice mill effluent  3.04 [47] 
Cupriavidus necatorDSM 545 Soil Beer brewery waste water containing 

maltose  
1.98 [65] 

Burkholderia glumaeMA13 Soil Crude glycerol  1.81 [66] 
Pseudomonas chlororaphis sub sp. aurantiaca DSM 

19,603 
Soil Apple pulp, a glucose- and fructose-rich 

waste  
4.15 [67] 

E. coli Sludge soil Sago molasses  27.1 [68] 
Cupriavidus necatorH16(ATCC 17699) Sludge from the Weende- 

Quelle 
Peanut oil  3.9 [69] 

Paracoccus denitrificansDSMZ 413 Soil Glycerol  0.17 [70] 
Rhodovulum sulfidophilumDSM-1374 Mud from intertidal flats Lactate  0.41 [71] 
Cupriavidus eutrophus B-10646 Soil Glycerol  85.8(Pilot scale fermentation) [72] 
Pseudomonas putida KT2440 (ATCC 47054) Sludge Acetate  0.35 [73]  

Fig. 3. The cleavage of β(1–4) glycosidic bond found between uronic acid and 3-O-sulfate-rhamnose (Rha3S) by Ulvan lyase via β- elimination mechanism.  
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3. Peptides produced from AB 

3.1. Ulvan lyase 

Ulvan lyase is a particular enzyme that depolymerizes ulvan into 
unsaturated sulfated oligosaccharides with various organic activities. 
Ulvan lyase is widely known to cleave β(1–4) glycosidic bond found 
between uronic acid and 3-O-sulfate-rhamnose (Rha3S) (Fig. 3) using 
the β-elimination mechanism [78,79]. In the Carbohydrate-Active 
Enzyme (CAZy) database, Ulvan lyases are now divided into three 
polysaccharide lyase (PL) families: PL24, PL25 and PL28 [80]. NLR42 
(NCBI accession number AEN28574; 46 kDa with two domains) was the 
first ulvan lyase discovered and the first member of the PL28 family 
[81]. It was isolated from Nonlabens ulvanivorans, a Gram-negative 
bacterium, peach-colored, rod-shaped, and strictly aerobic. 

Without isomerization, this mild enzymatic approach can yield all 
the oligosaccharides ingredients [82]. Producing these beneficial oli-
gosaccharides could be reached by developing a fermentative strategy 
for ulvan lyase industrial production. Unfortunately, the lack of 
knowledge about ulvan lyase has limited this capacity. Several in-
vestigations on this enzyme have been primarily targeted at screening 
for microorganisms displaying enzyme activity and catalysis charac-
teristics [78,83]. The fermentation scale was limited to the flask 
shaking, and the hot water technique confined the substrate used as the 
primary carbon source to pure soluble polysaccharides [82]. The gen-
eration of ulvan oligosaccharides has been conducted on a small scale 
owing to inadequate quality, insufficient fermentative substrates, and 
high production costs of the enzyme. Thus, innovative methods of pro-
ducing ulvan lyase are still required. 

Several studies have been carried out on large-scale ulvan lyase 
fermentation by reducing the cost of the raw materials and increasing 
the cost-effectiveness of high output production [78,82]. A recent 
research by Qiao et al. [15] aimed at ulvan lyase production using the 
Ulva prolifera (marine green algae) pure polysaccharide (PU). The pu-
rified PU is frequently used as the main carbon source for ulvan lyase 
production process. Qiao et al. replaced the PU with algal biomass 
powder to reduce the production cost. Catenovulum sp., a Gram-negative 
rod shape bacterium belongs to the Alteromonadaceae family, could 
successfully produce ulvan lyase by direct consumption of U. prolifera 
powder in the culture medium. The production was performed in a 5 L 
shake flask fermenter containing 5% (w/v) U. prolifera powder, 0.4% 
NH4Cl, 0.5% NaCl, 0.05% MgSO4 and 0.2% K2HPO4. The highest 
enzyme activity of 0.748 ± 0.031 (U/mL) was obtained by two-stage 
temperature conditions (28–32 ◦C), agitation (200–400 rpm), and 
initial pH 7.0. This fermentation model indicated that the short time of 
cultivation improved the activity of ulvan lyase. The authors recorded 
an ulvan lyase activity of 1.09 U/mL when the time of fermentation was 
shortened to 24 h in a 5-Liter fermenter. When the fermentation took 
place in a 30-Liter fermenter, a higher enzyme activity of 1.20 U/mL was 
yielded after 20 h [15]. 

4. Bio-acid production from AB 

4.1. Butyric acid 

Butyric acid is a 4-Carbon saturated short-chain fatty acid that is 
often utilized in the animal feed, medicinal products, and food industry 
with the global production of over 80,000 tons/year [84,85]. Bio-
catalytic and chemo-catalytic methods can convert butyric acid to bio-
fuels and fine chemicals, such as ethyl butyrate, butyl-butyrate and 1- 
butanol [86,87]. Moreover, butyric acid is well known for its anti- 
cancer properties, as it causes morphological and biochemical differ-
entiation in a number of malignant cells, resulting in the suppression of 
neoplastic properties. This opens up the possibility of using butyric acid 
prodrugs to treat tumors and hemoglobinopathies, including sickle cell 
anemia (SCA) and leukemia, as well as shielding hair follicles from radio 

and chemotherapy-induced alopecia [88,89]. Recently, lignocellulose- 
derived butyric acid synthesis has been investigated owing to the 
abundance of lignocellulosic biomass (LCB) (Fig. 4). However, because 
of the inhibitory effects of lignin-derived chemicals generated during 
pretreatment, detoxification of lignocellulosic hydrolysate is needed 
[90]. For instance, Clostridium tyrobutyricum ATCC25755; a well-known 
butyric acid-producing, has been significantly toxified by hydrolysates 
prepared from different kinds of plant biomass. In this context, ABs 
would be a promising feedstock for butyric acid production as they 
contain no or very less amount of lignin. 

Both micro- and macro algae can be used as the feedstocks for butyric 
acid, where brown, green and red algae have been studied substantially 
for chemicals and biofuels production [9,91]. Among macroalgae, Sac-
charina japonica, is a favorable source of biomass feedstock. Alginate, 
cellulose, fucoidan, laminaran and mannitol are the main carbohydrates 
in S. japonica [92]. All carbohydrates except mannitol can be removed 
by enzyme hydrolysis for microbial fermentation [85]. Mannitol re-
sembles 15% (w/w) of brown algae dry mass and may be recovered in 
water upon dilution with acid [93]. Butyric acid from brown algae was 
discussed in numerous investigations using mixed-bacterial cultures 
[17,94,95]. For example, a high concentration of butyric acid (11 g/L) 
was produced by C. tyrobutyricum ATCC25755 from S. japonica hydro-
lysate [17]. 

4.2. Kainic acid 

Kainic acid is a frequently used neuropharmacological drug, helping 
to disassemble the major function of receptors for ionotropic glutamates, 
including the central nervous system kainite receptor. The kainoid 
family of natural neurochemicals is also regarded to be a flagship 
member. For decades, the tropical algae Digenea simplex was utilized to 
treat parasite worm diseases as an anthelmintic agent in Asia [96]. The 
active compound, kainic acid, was discovered in the 1950 s [97,98], 
allowing it to be used as Ascaris combination therapy until the 1990 s 
[99,100]. Furthermore, neuropathology studies have revealed that 
kainic acid-sensitive receptors (KARs) play a role in acute and chronic 
neurodegenerative diseases such as epilepsy, pain, and psychiatric dis-
orders [101]. 

Several experiments have been designed for kainic acid synthesis. 
However, production of kainic acid is limited due to the low yields and 
long production pathway steps [102,103]. Likewise, there has been little 
progress in understanding how seaweeds produce kainic acid. The 
biosynthetic rationale for developing domoic acid in microalgal Pseu-
donitzschia multiseries diatoms was recently developed by identifying a 
four-gene cassette (dabA-D) and confirming its in vitro enzymatic ac-
tivities [104]. Domoic acid and kainic acid have molecular similarities 
that have led researchers to suggest a conserved production pathway. An 
intermedia route of prekainic acids would be generated by a dabA ho-
mologation that may interact cyclically directly with a DabC homolog to 
make kainic acid DMAPP (dimethylallyl pyrophosphate) [104]. 

Several organisms, including unicellular algae, fungi, bacteria, and 
plants, are reported to contain cluster genes from the same metabolic 
pathway, such as the kainic acid biosynthesis (kab) cluster [104]. A 
recent research work done by Chekan et al. [16] discovered and char-
acterized the precise two-enzyme kainic acid biosynthetic pathway in 
red macroalgae from L-glutamic acid and dimethylallylpyrophosphate. 
The research demonstrated that the biosynthesis genes are classified 
together in the Palmaria palmata and D. simplex genomes. Additionally, 
recent research has applied a crucial biosynthetic alpha-ketoglutarate- 
dependent dioxygenase enzyme to effectively create kainic acid on a 
gram scale in a biotransformation methodology. It separated the genes 
dskabA and dskabC from P. palmata and D. Simplex and expressed them 
successfully in E. coli [16]. The discovery of the biosynthetic genes of 
kainic acid allowed the development of kainic acid through biotrans-
formation with E. coli cells which express the dskabC gene in the vector 
apET28 (Fig. 5). 
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KabC was tested in an in vitro setup using prekainic acid, aKG, Fe2+, 
and DsKabC isolated from 1 L of the culture of E. coli cell to see if it could 
produce kainic acid. Over two phases, 10 mg of produced prekainic acid 
was entirely converted to 4.6 mg kainic acid after 16 h of incubation, 
yielding 46% isolated yield and 26% total isolated yield. Despite the 
efficacy of this chemoenzymatic technique, the necessity to purify 
DsKabC makes this technology unsuitable for large-scale kainic acid 
synthesis. As a result, a biotransformation technique was attempted to 

eliminate the request for enzymes purification and, rather, to convert 
produced prekainic acid directly to kainic acid, expressing DsKabC, into 
E. coli cells [16]. This simplified method was used to generate prekainic 
acid by E. coli cell culture. On the scale of 1L E. coli cell culture, virtually 
8 mmol of prekainic acid were completely used in the kainic acid syn-
thesis process. This technique produced 1.1 g of refined kainic acid, with 
a total yield of 32%, and more than 95% purity as determined by Nu-
clear magnetic resonance (NMR) spectroscopy. Following a reverse- 

Fig. 4. Schematic diagram of butyric acid production from different carbon sources, including food, agricultural and industrial wastes.  

Fig. 5. Kainic acid biosynthesis through biotransformation with E. coli cells expressing the dskabC gene.  
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phase preliminary HPLC, a two-step purification method employing 
activated charcoal was developed [16]. 

4.3. Lactic acid 

Lactic acid is an odorless and colorless monocarboxylic acid with 
numerous applications in food and non-food industries [105]. The 
production of polylactic acid, a biodegradable polymer that resembles a 
promising replacement to synthetic petroleum plastic, has increased the 
need for lactic acid in numerous industries [106]. Lactic acid has been 
implemented in various applications, including cosmetics, drug delivery 
systems, food, pharmaceuticals, and industrial biotechnology. Depend-
ing on the used bacterial strains, over 90% of commercial lactic acid is 
generated from corn starch, glucose, or sucrose as a carbon source to 
produce D- or L-lactic acid [107]. Lactic acid can be produced either by 
chemical synthesis or microbial fermentation. During its chemical syn-
thesis, two optical isomers of lactic acid, L(+)- and D(-)-lactic acid, are 
produced, where the primary agent implicated in human acidosis is 
thought to be D(-)-lactic acid [108]. 

For lactic acid synthesis by microbial fermentation, a number of 
microbial strains, such as lactic acid bacteria (e.g., Lactobacillus brevis 
and Lactobacillus plantarum) [109], yeast (e.g., Pichia stipites) [110], and 
mold (e.g., Rhizopus oryzae) [111], have been utilized. The microbes 
producing lactic acid are generally isolated from animal feces, milk 
products, fruits, and soil that can convert a wide variety of feedstocks 
into lactic acid (Table 3). Lactic acid bacteria are classified into homo- 
and hetero-fermentative strains [112]. The aldolase enzyme gene is 
found in homo-fermentative lactic acid bacteria, which is the main 
product. They transform one glucose molecule into two lactic acid 
molecules that produce two ATP molecules. On the other hand, hetero- 
fermentative lactic acid bacteria use the phosphoketolase pathway 
(Fig. 6) to transform one xylose molecule into one lactic acid molecule 
and one ethanol or acetic acid molecule [113]. 

Despite the intensive research on enhancing lactic acid production, 
the high cost of lactic acid production remains a major impediment to 
their adoption. This means the expense of lactic acid synthesis from 
carbon sources must be alleviated for industrial application [126]. In 
this regard, lactic acid generation has been explored through fermen-
tation of some agricultural products including, maize starch [127], po-
tato starch [128], rice starch [129], and juice of sweet sorghum [130]. 
Nevertheless, scientists have been looking for more affordable lactic acid 
feedstocks for microbial fermentation. Apple pomace [131], corn stover 
[132], waste sugarcane [126], wheat straw [133], and wood waste 
[134] are examples of the low-carbon cost lactic acid-feedstock and 
renewable lignocellulosic biomass resources. However, lignocellulose 
based lactic acid production has several demerits, such as inefficient 
lignin extraction and being an inhibitory agent during fermentation. 

In this intellect, marine algae have attracted tremendous attention in 
terms of providing affordable carbon sources for fermentative ap-
proaches. This is owing to their rapid growth, excessive abundance, and 
photocarbonity (act as a photoautotrophic organism). In a recent 
investigation by Lin et al. [18], brown, green, and red seaweeds were 
evaluated for lactic acid fermentation. The work reported that Gracilaria 
sp. (red seaweed) has the largest concentration of carbon in seaweed 
composition. At optimal conditions, the ultimate lactic acid concentra-
tion of Gracilaria sp. hydrolysate culture fermented by lactic acid bac-
teria was 19.32 g/L [18]. In the lactic acid fermentation from Gracilaria 
sp. hydrolysate, two-thirds of reducing sugars were consumed after 72 
h. However, the polysaccharide chains of Gracilaria sp. are made up of 
repeated alternating units of the non-fermentable sugar, namely 3,6- 
anhydrogalactose that remained unconverted after fermentation, 
because lactic acid bacteria are not capable of using 3,6-anhydrogalac-
tose [135]. In another study, Lactobacillus paracasei LA104 was 
cultured by Nguyen et al. [136] to co-ferment the enzymatic hydroly-
sates of Hydrodictyon recticulum (fresh-water green microalgae, includes 
various polysaccharides, mostly glucose and mannose) to produce lactic 

acid [136]. 

5. Biofuel 

5.1. Bioethanol 

The most widely utilized liquid biofuel is bioethanol, and it is 
considered one of the latest solutions for tackling climate change and 
slowing the depletion of oil reserves [137]. Sugars fermentation by 
microorganisms for ethanol generation is the process used to make 
bioethanol. Because certain essential sugars are not readily available, 
treatments like pH, temperature, and prior to fermentation enzymes are 
required to hydrolyze the sugars (Fig. 7). Bioethanol is almost entirely 
produced commercially by fermenting sustainable agricultural waste, 
including sugarcane or maize. There are considerable advances in 
biomass conversion technologies to ethanol from various feedstocks 
[138]. While sucrose may be quickly converted to ethanol by fermen-
tation in molasses made from sugar cane stalks, maize starch must be 
saccharified via liquefaction and hydrolysis utilizing amylolytic en-
zymes following significant pretreats. However, environmental concerns 
about the significant land-use change and food safety have raised 
questions about how safely these feedstocks may be used in the future 
[139,140]. Bioethanol may be mixed with petroleum and used in 

Table 3 
Biosynthesis of lactic acid by various isolates from various substrates.  

Producing 
organism 

Isolation source Production 
carbon source 

Production 
efficiency 

Reference 

Lactobacillus 
delbrueckii 
(DSM 
20074) 

Sour grain mash Municipal 
biopulp 

82.0 ±
1.5% 

[114] 

Lactobacillus 
plantarum 
CRA52 

Salt-fermented 
cucumber 

Whey 
permeates 
based medium 

85.9 ±
0.99% 

[115] 

Enterococcus 
hirae ds10 

Soil Beet molasses 71.9 ± 0.20 [116] 

Lactobacillus 
sp. 
TERI-D3 

Dairy water 
samples 
collected from 
local dairy farms 

Glucose 
Lactose 
Galactose 
Sucrose 

95% 
90% 
83% 
86% 

[117] 

Lactobacillus 
plantarum 
SKL-22 

Dairy plant Rice straw 92.9% [118] 

Lactobacillus 
delbrueckii 
CECT 286 

Sour grain mash Orange waste 
enzymatic 
hydrolysates 

93.7% [119] 

Lactobacillus 
rhamnosus 
ATCC 
53,103 

Human 
gastrointestinal 
mucosa of 
healthy 
individuals 

Carob pod 
waste 

76.9% [120] 

Lactobacillus 
delbrueckii 
subsp. 
bulgaricus 
ATCC 
11,842 

Dairy products; 
Bulgarian yogurt 

Organosolv 
pretreated 
lignocellulosic 
biomass 

82.7% [121] 

Bacillus 
coagulans 
LA-15–2 

Dairy products; 
evaporated milk 

Cassava 
bagasse 

88.0% [122] 

Lactobacillus 
planatrum 
23 

Taiwanese pickle Microalgal 
feedstock 

72% [123] 

Bacillus 
coagulans 
DSM ID 
14–300 

Hemp leaves Hydrolysate 
from sugarcane 
bagasse 

87% [124] 

Lactobacillus 
pentosus 
CECT 4023 
T (ATCC- 
8041) 

Corn silage Gardening 
residues 

95% [125]  
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vehicles without modifications if many different vehicle manufacturers 
currently develop it in combination with 5% (v/v) or up to 85% (v/v) in 
flex-fuel vehicles. 

Since marine algal biomass is thought to account for about half of all 
global biomass, it has much potential as a feedstock for future bio-
ethanol production (Table 4). From another avenue, the problems 
related to increased land for biomass crops and the food and fuel dispute 
do not apply to macroalgae [141,142]. Macroalgae, especially Porphyra 
sp., Undaria pinnatifida, and L. japonica; widely cultivated in Asia, are the 
most prolific producers in China, Japan, and South Korea. An estimated 
5.5–6 billion dollars are spent annually in the marine industry, and up to 
7.5 million tons are collected, cultivated, and produced naturally around 
the globe. The most common application as human-use food stuffs is 
around 5 billion dollars per year [143]. 

Since seaweeds are not human food sources, reasonable exploitation 
of algal feedstocks for bioethanol production would not affect global 
food security [141]. Seaweeds are also advantageous in terms of having 
a high concentration of polysaccharides, non-lignin, complex sugars and 
a fast rate of biomass growth [141,152]. Alginates, agars, and 

carrageenans are three polysaccharides formed by seaweeds [153]. 
Brown seaweed extracts contain alginates, while red seaweed extracts 
contain agar and carrageenan [154]. The high carrageenan and agar 
content of red seaweeds is the reason behind being appealing as bio-
ethanol sources [155,156]. Because of its high sugar content, Gelidium 
amansii has also been considered a bioethanol production candidate 
[157,158]. The three critical phases in the development of bioethanol 
from seaweed are (a) polysaccharide hydrolysis into monosaccharides, 
(b) bioethanol biosynthesis through the monosaccharides fermentation 
(c) accumulation and recovery of bioethanol [152]. Acid hydrolysis is 
preferred over enzymes and chemicals owing to its high reaction rate 
and low expense. It is, however, more likely to produce undesirable by- 
products that may interfere with fermentation and cell growth 
[149,152]. 

Bader et al. [22] examined whether a recently identified fungus 
strain Trichoderma harzianum could thrive only on undamaged cells of 
Chlamydomonas reinhardtii algal species as nutrients. Proteolytic, pecti-
nolytic, amylolytic, and cellulolytic activities were found in the fungal 
medium, which successfully saccharified either milled or dry biomass or 

Fig. 6. Homo-fermentative and hetero-fermentative pathways of lactic acid bacteria.  

Fig. 7. Schematic illustration of the fermentation pathways for bioethanol production from different biomasses.  
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intact microalga cells. With the help of T. Harzianum enzymes, 
C. reinhardtii cell-wall biomass was saccharified effectively as the orig-
inal strain biomass, demonstrating that these enzymes have complete 
potential to overcome cell wall resistance to hydrolysis [22]. Sacchari-
fication of AB provided up to 22.4 g/L reducing sugars that might be 
converted into ethanol efficiently using S. cerevisiae bio-fermentation. 
The efficiency of AB conversion to ethanol in this work is among the 
highest ever recorded, encouraging further research into the scaling up 
of T. harzianum enzyme production. About 10.8 g/L ethanol was pro-
duced from 22.4 g/L reducing sugars in 18 h using S. cerevisiae cultures. 
In comparison with Yeast Extract–Peptone–Dextrose medium as a pos-
itive control, the yeast was found to be able to develop and deplete the 
sugars in the medium [22]. Recently, these high ethanol levels from the 
microalgal biomass fermentation were obtained using Desmodesmus sp. 
biomass with carbohydrate concentration of 55% (w/w) and saccha-
rified at 20% (w/v) biomass at 120 ◦C for 30 min. and in presence of 2% 
(v/v) H2SO4. Sugar content in such preparations was 98.3 g/L, which 
could be converted effectively to 49.1 g/L ethanol through fermentation 
[159]. Notably, the production of bioethanol from cyanobacterial 
biomass is considered as the most successful case. This is contributed to 
the substantially different composition and cell-walls structure as well as 
unlike most Chlorophytes, most cyanobacteria do not accumulate lipids 

as a carbon competing sink [160]. 
Similarly, yeast strains of Candida glabrata, Candida parapsilosis, and 

Kodamaea ohmeri were isolated and identified from the surface of Gra-
cilaria fisheri seaweed. These three yeast species generated varied 
quantities of ethanol. C. glabrata produced the most ethanol concen-
tration of 2.5 x10-2g ethanol g− 1 sugars, while C. parapsilosis produced 
the least amount of ethanol 1.7x 10-2g ethanol g− 1 sugars [150]. This 
result can be explained on the basis of the high carbohydrate content of 
G. fisheri agar, which yeast cells may have utilized as a carbon source. 
K. ohmeri, C. parapsilosis, and C. glabrata can ferment both glucose and 
galactose, where C. glabrata selectively ferments glucose and 
C. parapsilosis ferments galactose. This might explain why, even at low 
glucose concentrations, the fermentation processes were able to 
generate ethanol from galactose [150]. In the presence of low quantities 
of glucose in the feed medium, ethanol is formed as a secondary 
metabolite. During the first 10 h, C. glabrata used glucose and metabo-
lized a limited quantity of galactose. This is due to C. glabrata’s capacity 
to generate ethanol even under aerobic circumstances in the presence of 
a high concentration of glucose in the medium [161]. 

6. Production of other valuable products from ABs 

6.1. Natural pigments 

Natural pigments are viable substitutes for the toxic colorants used 
widely in textile, food and biomedical sectors. Various operants have 
paved the way for microbe-derived pigments, including the scarcity of 
readily available natural food colorants, the significant environmental 
and safety issues caused by synthetic pigments, and the market prefer-
ence for natural products over synthetics. Microorganisms-based pig-
ments are of industrial interest since they can be produced rapidly under 
regulated conditions. This results in excellent product outputs with 
availability all year round [162,163]. Many fungi produced a wide range 
of high-yield, stable and low-light sensitivity pigments [162], but only a 
few were examined as possible food dyes. For example, Penicillium is a 
widely known fungus with possible application in the food industry and 
has been reported to produce monascus-like pigments with polyketide 
color and structure similarity to monascus pigment. Unlike Monascus 
spp., this culture does not produce the deadly citrin chemical [164]. The 
high expense of the industrial processing technologies currently in use 
prohibits naturally-produced pigments as a substitute for toxic chemical 
pigments. Therefore, natural pigments or coloring substances that are 
long-lasting, simple, and even dispersion in the substratum matrix are in 
great demand [165]. SSF has risen to attention as a feasible alternative 
to liquid culture-based fermentation technology, with higher pigment 
efficiency than the submerged culture [166]. SSF natural pigment pro-
cessing has many advantages over the submerged culture, including 
better product, higher yield, simpler methods, catabolic repression, 
lower capital expenditure, reduced inhibition, and waste performance 
levels of the final products [167]. One of the main components 
impacting the SSF process is the solid substrate. SSF with a low-cost 
and easily accessible substrate might be an excellent way to make the 
fungus produce large amounts of pigment. This is owing to the fact that 
they are not a food source and possess a high level of carbohydrates, 
such as cellulose, alginate, mannitol, fucoidan, and laminarin 
[168,169]. In this context, seaweeds could be the attractive choice for 
microbial conversion processes due to having many merits, including 
being easy to grow, having 15–20% carbohydrates in total wet weight, 
and producing more dry biomass than fast-growing terrestrial crops 
[170]. Seaweeds also contain about 27% of minerals needed in pigment 
generation process (sodium, calcium, copper, iron, magnesium, potas-
sium, zinc and so on) and amino acids (alanine, glutamate, aspartate, 
proline, and others) [168]. 

S. japonica is one of the essential algal species in the biotechnological 
industry for fungi producing pigments. Apart from the high content of 
carbohydrates, amino acids, and minerals, S. japonica also has a high 

Table 4 
Recently conducted studies using AB-based media for bioethanol production by 
several microbial producers, their isolation sites and productivity.  

Fermentation 
organism 

Algal biomass Bioethanol 
productivity (μL g −
1 DS) 

Reference 

Ambrosiozyma 
angophorae 
(Strain 5830, 
CBS-KNAW) 

Laminaria digitate 
(Dark brown 
seaweed)  

42.51 [143] 

Saccharomyces 
cerevisiae 

Chlamydomona 
sreinhardtii CC125 
(Unicellular green 
algae)  

10.8 [22] 

Monascus sp. NP1 Cladophora glomerata 
(Filamentous green 
macro algae)  

13.84 [144] 

Escherichia coli 
KO11 
(ATCC55124) 

Saccharina japonica 
(Brown algae)  

15.56 [145] 

Saccharomyces 
cerevisiae 

Kappaphycus alvarezii 
(Red algae)  

33.20 [146] 

Saccharomyces 
cerevisiae 
ATCC 200,062 

Gracilaria Verrucosa 
(Red algae)  

55.20 [147] 

Gelidium latifolium 
(Red algae)  

108.30 

Saccharomyces 
cerevisiae 
TISTR no. 5339 

Gracilaria 
tenuistipitata 
(Red algae)  

190.0 [148] 

Gracilaria fisheri 
(Red algae)  

160.0 

Saccharomyces 
cerevisiae 

Palmaria palmate 
(Red algae)  

129.02 [149] 

Candida glabrata 
ABRC-S2 

Gracilaria fisheri 
(Red algae)  

2.50 [150] 

Kodamaea ohmeri 
ABRC-S3  

2.16 

Candida parapsilosis  

ABRC-S1  

1.70 

Saccharomyces 
cerevisiae 

Laminaria digitata  63.05 [151] 
Laminaria 
hyperborean  

61.07 

Saccharina latissima  65.05 
Pichia angophorae Laminaria digitata  38.19 

Laminaria 
hyperborean  

29.17 

Saccharina latissima  13.07 

DS: dry solids. 
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moisture content, ranging from 70 to 90%, making it ideal for fermen-
tation. Adding to this, the FDA has approved S. japonica for human 
consumption, and it is regarded as an excellent source for other bioac-
tive compounds [168]. General et al. [20] studied the effectiveness of 
using S. japonica as a feedstock for the fungus Talaromyces amestolkiae 
GT11 to produce pigments without requiring any salt or nitrogen 
addition. The pigment’s overall absorption range was at 510 nm (red) 
and 410 nm (yellow) under optimal conditions, and pigment yields of 
506.2 (red) and 1,153.5AU/gdfs (yellow). The results show that pigment 
synthesis by T. amestolkiae GT11 (newly isolated fungal strain) culture 
utilizing S. japonica as a substrate is strongly dependent on culture 
conditions. To illustrate, the culture has a great capacity to break down 
and use S. Japonica polysaccharides. The biomass of fungal mycelia was 
shown to be greater during the growth phase, however, by the end of 
fermentation, the pigment production was lower. This might be 
explained by the fact that when the sugar level of the medium increased, 
the fungal culture’s pigment output dropped [20]. T. amestolkiae GT11 
developed rapidly for 288 h without any further nutrient supplemen-
tation. This means that fermentation of S. japonica with T. amestolkiae 
GT11 is a low-cost technology. T. purpurogenus species has been shown 
to generate polysaccharide-degrading enzymes such cellulases, fucoi-
danases, β -glucosidases, and xylanases. T. amestolkiae GT11 produces 
hydrolyzing enzymes during the growth. As a result, the concentration 
of reducing sugar in the fermentation medium rises. [20]. Suraiya et al. 
[171] used S. japonica as an SSF substrate to maximize the natural 
pigment production from Monascus sp. under optimal physical and 
nutritional conditions. Monascus purpureus yielded 79.87, 80.07 and 
83.01AU/gdfs, while Monascus kaoliang yielded 75.09, 77.22, and 
83.23AU/gdfs red, orange, and yellow pigments, respectively at 30 ◦C 
for 20 days. M. kaoliang exhibited the maximum pigment content of 50% 
with a 3 mL inoculum size, whereas M. purpureus produced 60% pigment 
content [171]. 

6.2. Biosurfactant 

Biosurfactants are biologically derived natural compounds produced 
by some bacterial strains. They are promising alternatives in various 
applications in terms of their biocompatibility, biodegradability and low 
toxicity. Several surfactin, iturin, and fengycin lipopeptide bio-
surfactants were previously produced by Bacillus genus bacteria [172]. 
Microbes either generate biosurfactants on the cell surface or secrete 
them extracellularly [173]. Biosurfactants outperform traditional sur-
factants owing to having a lower production cost. Surfactants are now 
employed in the solubilization and removal of heavy metal pollution 
from soil [174], the degradation of certain pollutants in residential 
wastewater [175], and the bioremediation of waste engine oil [176]. 
Market demand and new environmental legislation have led to the 
discovery of many natural surfactants as alternatives to traditional 
surfactants despite the omnipresence of commercial surfactants from 
petroleum derivatives [177]. However, the industrial development of 
biosurfactants is still in its early stages. The high expenditure of bio-
surfactant microbial culture processing (purification, cultivation, pro-
duction and recovery) is the reason behind its production problems 
[178,179]. Biosurfactants can be produced by microorganisms and 
chemical processes/synthesis [178]. 

In a recent study by Yun et al. [180], he have proven the production 
of Bacillus subtilis C9′s high-value biosurfactant, utilizing defatted AB 
hydrolysate as the sole fermentation substratum. Despite the potential 
for by-products produced during hydrolysis to inhibit the production, 
the results indicated that the diluted defeated Chlorella biomass (DCB) 
hydrolysate was suitable for facilitating high bacterial growth compared 
to the control culture. After extracting the crude biosurfactant by acid 
precipitation, the culture grown on DCB hydrolysate medium produced 
1.21 g/L of C9-biosurfactant, while only 0.89 g/L were generated by 
cultivation in glucose supplemented LB. The productivity for raw bio-
surfactants from LB supplemented with glucose and DCB was 0.30 g/L/ 

day and 0.40 g/L/day, respectively. However, for cultures grown on LB 
supplemented with glucose and DCB hydrolysate medium, the C9- 
biosurfactant yield was 0.06 g/g and 0.08 g/g, respectively, based on 
monosaccharide substrate [180]. These findings strongly suggested that 
DCB hydrolysate might be used as the only substrate for the generation 
of bacterial biosurfactants. However, it should be emphasized that by 
adjusting fermentation parameters and optimizing the growing medium, 
the production of B. subtilis biosurfactant might be further enhanced. 

According to the authors, the supplementation of metal co-factors in 
the culture DCB hydrolysate medium has led to a higher biosurfactant 
yield than the traditional LB [180]. Despite the low biosurfactant yield 
(20%) and the additional costs of purifying crude biosurfactant 
[181,182], the synthesis of C9-biosurfactant might be significantly 
assisted by adding metal-containing cation residues. The higher yield of 
C9-biosurfactant in DCB hydrolysate than in LB was most likely due to 
better availability of metal cofactors, which have been linked to the 
synthesis of biosurfactant from Bacillus subtilis [183]. Further studies 
will be needed to investigate the effect on the hydrolysate media 
nutritional values obtained in various treatment protocols of algae 
biochemical composition and species identification to examine the po-
tential for integration into microbial fermentation of critical metal co- 
factors from upstream AB processing [184]. Furthermore, investi-
gating the fermentation of hydrolysate of AB via a number of bacterial 
species, including different strains of Bacillus, could lead to the discovery 
of new marketable bioproducts, bolstering the economic viability of 
industrial algal biorefining. 

7. Current challenges and future perspectives 

7.1. Techno-economic and policy constraints 

AB is presently regarded as a sustainable and renewable feedstock for 
the manufacture of a variety of valuable products. The abundance of ABs 
in both freshwater and saltwater conditions is one benefit of the inten-
sive algae production systems. Despite the considerable potentials, 
large-scale exploitation of AB-based production technologies is yet 
limited because of the complexity of the biomass generation systems 
(separation, drainage, and conversion into various products), which 
results in environmental and economic issues [6]. 

Most algae species are not capable of surviving in open ponds for 
long periods owing to the high susceptibility to contamination by fast- 
growing microbes [185]. In addition to this, researchers struggle to 
discover algae species with high biomass and high carbon content at the 
same time which impedes the scaling up of the production system. Low 
production yield and process optimization are also growing obstacles 
against ABs downstream processing. The chemical profile of ABs (pro-
teins, lipids, enzymes and other compounds) differs among the species, 
which needs hundreds of trials to select the optimum algal strain for the 
microbial producer [185]. To overcome these limitations and develop an 
integrated biomass system, some natural and safe antimicrobials could 
be introduced to the production system to avoid contaminations. The 
low production yield issue could be mitigated by using algal consortia to 
achieve full nutrient supplementation for the microbial producer. 

Large-scale algae-based production necessitates a number of eco-
nomic considerations in terms of capital cost, labor, land usage, elec-
tricity, and water [186]. Because the manufacturing costs are 
considerable, these sorts of production on an industrial scale are limited, 
impeding the route to industrialization and commercialization. To 
illustrate, the production cost of algal biofuels is roughly 1.50–2.50 US 
$/L, while the cost of petroleum is 1.10 US$/L, where the latter is 
obviously cheaper [187]. Furthermore, the harvesting of ABs accounts 
for 30% of the total cost and has become a burden to the producers 
[188]. According to Brentner et al. [189], there is an increase in the 
power requested to harvest microalgae by ultrasonication (110%), 
centrifugation (90%), filtration (79%) and supercritical CO2 (66%). As a 
result, an energy-efficient extraction method is required to ensure that 
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production is economically sustainable. Further research on the cost- 
effective production of these compounds is required not only to 
discuss the utilization of ABs, but also to keep improving the valoriza-
tion of residue streams or co-products to enhance the productivity plans 
of commercial algae-based production. 

It seems that microbial cultivation and generation of desirable 
products is not free of demerits. First of all, some genetically engineered 
strains could be very susceptible to mutations producing undesirable 
byproducts. These byproducts might interrupt the metabolic pathway 
hindering the generation of useful products. Secondly, since ABs are 
highly nutritive, the production reactors could be easily contaminated 
with undesirable microbes which results in severe economic issues. Last 
but not least, some microbial enzymes that catalyze bioconversion 
processes are usually produced in low yield, which requires extremely 
humongous bioreactors to achieve the required output [190]. 

7.2. Practical implications of this study 

Tremendous efforts are still required to overcome the existing ob-
stacles with the microbial conversion of ABs for scaling up these tech-
nologies and sustainable production of bioactive products from ABs. 
Since bacterial cells have shown significant enhancement in maximizing 
the yield of SPSs, more investigations are needed on potential microbial/ 
algal symbiotic relationships as innovative sources of SPSs. Owing to the 
favorable aspects of the microbial enzyme, more experimentations are 
required to search for PU for higher yields and enzyme activities. In 
addition, compared to lignocellulosic biomass fermentation that faces 
problems with phenolic compounds produced during pretreatment of 
these biomass, ABs are more practical for producing value-added 
products, such as butyric acid production [91]. Genes transformation 
between algal and bacterial species could open the possibility of locating 
more biosynthetic genes in algal sp. producing vital products for po-
tential microbial expression of other acids. Furthermore, some studies 
have illustrated the importance of AB as an outstanding carbon source 
for the development of PHAs [9]. Algal juices rather than algal hydro-
lysates should be utilized in large scale PHA production as they are more 
practical and cost effective for supporting the microbial culture since the 
former does not require extraction costs. Based on the study of Yun et al. 
[180], which discussed the potential of diluted defeated Chlorella 
biomass (DCB) hydrolysate as a carbon source for Bacillus subtilis C9, 
more research is needed for maximizing biosurfactants production to be 
approved as safe anti-cancer and anti-oxidant drugs in global healthcare. 
Despite the pressing demand for natural colorants in the textile industry, 
there has been a limited investigation about using AB fermentation 
media [171]. Resolving the problem of fuels vs food advocates the high 
need for the industrial implementation of AB microbial fermentation. 
Overall, owing to the emergence of life-threaten issues, such as bacterial 
resistance, HIV/AIDS, resistant tumors and COVID-19, microbial-algal 
biotechnology could be a new resort for generating innovative bio-
products as potential treatments [191]. 

8. Conclusion 

This review was conceptualized to investigate the potential of ABs as 
promising feedstocks for microbial conversion with the purpose of 
generating innovative compounds including SPSs, ulvan lyase, butyric 
acid, kainic acid, lactic acid, PHAs, biosurfactants, natural colorants, 
and bioethanol. These compounds could be incorporated into different 
industries including food, personal care, biomedical, pharmaceutical, 
tissue engineering and transportation. Recent studies have focused on 
obtaining novel compounds from ABs rather than exploiting them as 
energy sources for microbial synthesis. Some natural compounds with 
distinctive properties can be extracted only from microbial cells such as 
PHAs, bio-acids and microbial enzymes, replacing the synthetic mate-
rials with lower cost. Each microbial species has certain metabolic 
pathways, process conditions and sugar availability for utilizing ABs for 

optimal production of the bioactive compounds. The potential for 
downstream processing of ABs for microbial cultures will help to pro-
duce more desirable high-value products, paving the way for significant 
advancement in the future of microbial-algal-based biotechnology. 
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of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 2007;73(1): 
117–23. https://doi.org/10.1128/AEM.01311-06. 

[111] Yamane T, Tanaka R. Mass production of spores of lactic acid-producing Rhizopus 
oryzae NBRC 5384 on agar plate. Biotechnol Prog 2013;29(4):876–81. https:// 
doi.org/10.1002/btpr.1744. 

[112] Ye L, Zhou X, Hudari MSB, Li Z, Wu JC. Highly efficient production of L-lactic 
acid from xylose by newly isolated Bacillus coagulans C106. Bioresour Technol 
2013;132:38–44. https://doi.org/10.1016/j.biortech.2013.01.011. 

[113] Juturu V, Wu JC. Microbial production of lactic acid: the latest development. Crit 
Rev Biotechnol 2016;36(6):967–77. https://doi.org/10.3109/ 
07388551.2015.1066305. 

[114] Alvarado-Morales M, Kuglarz M, Tsapekos P, Angelidaki I. Municipal biopulp as 
substrate for lactic acid production focusing on downstream processing. J Environ 
Chem Eng 2021;9(2):105136. https://doi.org/10.1016/j.jece:2021.105136. 

[115] Sharma A, Mukherjee S, Reddy Tadi SR, Ramesh A, Sivaprakasam S. Kinetics of 
growth, plantaricin and lactic acid production in whey permeate based medium 
by probiotic Lactobacillus plantarum CRA52. LWT 2021;139:110744. https://doi. 
org/10.1016/j.lwt.2020.110744. 

[116] Abdel-Rahman MA, Hassan S-D, Alrefaey HMA, El-Belely EF, Elsakhawy T, 
Fouda A, et al. Subsequent improvement of lactic acid production from beet 
molasses by Enterococcus hirae ds10 using different fermentation strategies. 
Bioresour Technol Rep 2021;13:100617. https://doi.org/10.1016/j. 
biteb.2020.100617. 

[117] Verma D, Subudhi S. Lactobacillus sp. strain TERI-D3’, as microbial cell factory 
for fermentative production of lactic acid. Curr Opin Green Sustain Chem 2021;4: 
100059. https://doi.org/10.1016/j.crgsc.2021.100059. 

[118] Yadav N, Nain L, Khare SK. One-pot production of lactic acid from rice straw 
pretreated with ionic liquid. Bioresour Technol 2021;323:124563. https://doi. 
org/10.1016/j.biortech.2020.124563. 

[119] de la Torre I, Ladero M, Santos VE. d-lactic acid production from orange waste 
enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Ind 
Crops. Prod 2020;146:112176. https://doi.org/10.1016/j.indcrop.2020.112176. 

[120] Bahry H, Abdalla R, Pons A, Taha S, Vial C. Optimization of lactic acid production 
using immobilized Lactobacillus Rhamnosus and carob pod waste from the 
Lebanese food industry. J Biotechnol 2019;306:81–8. https://doi.org/10.1016/j. 
jbiotec.2019.09.017. 

[121] Karnaouri A, Asimakopoulou G, Kalogiannis KG, Lappas A, Topakas E. Efficient d- 
lactic acid production by Lactobacillus delbrueckii subsp. bulgaricus through 
conversion of organosolv pretreated lignocellulosic biomass. Biomass Bioenergy 
2020;140:105672. https://doi.org/10.1016/j.biombioe.2020.105672. 

[122] Chen H, Chen B, Su Z, Wang K, Wang B, Wang Y, et al. Efficient lactic acid 
production from cassava bagasse by mixed culture of Bacillus coagulans and 
Lactobacillus rhamnosus using stepwise pH controlled simultaneous 
saccharification and co-fermentation. Ind Crops Prod 2020;146:112175. https:// 
doi.org/10.1016/j.indcrop.2020.112175. 

[123] Chen P-T, Hong Z-S, Cheng C-L, Ng I-S, Lo Y-C, Nagarajan D, et al. Exploring 
fermentation strategies for enhanced lactic acid production with polyvinyl 
alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock. 
Bioresour Technol 2020;308:123266. https://doi.org/10.1016/j. 
biortech.2020.123266. 

[124] Alves de Oliveira R, Schneider R, Vaz Rossell CE, Maciel Filho R, Venus J. 
Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic 
hydrolysate using Bacillus coagulans. Bioresour Technol Rep 2019;6:26–31. 
https://doi.org/10.1016/j.biteb.2019.02.003. 
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