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Chapter 6
Microalgae for Industrial Purposes

Mario Giordano and Qiang Wang

Abstract The use of microalgae for the production of compounds of commercial 
relevance has received substantial interest in recent years, mostly because these 
organisms contain a plethora of valuable compounds and their high turnover rate 
and functional plasticity make them relatively easy to cultivate for the production of 
biomass and added-value molecules. The metabolic flexibility of algae allows using 
them for many commercial applications, but it also makes it easy for cultures to 
diverge from the intended biomass quality. A thorough comprehension of the prin-
ciples that control growth and carbon allocation is therefore of paramount impor-
tance for effective production of algal biomass and derived chemicals. In this review, 
we intend to provide basic but exhaustive information on how algae grow and on 
their biotechnological potential. In addition to this primary goal, we also give the 
reader a succinct panorama of culturing systems and possible applications.

Keywords Algae • Carbon allocation • Genetics • Culture • Cell composition • 
Stoichiometry • Biofuel • Food • Feed

6.1  Introduction

The use of microalgal biomass for capturing CO2, for the production of biofuel and 
pharmaceutical and nutraceutical products, as food and animal feed, and for waste-
water treatment has recently become a focal point for research and the object of 
public interest (e.g., Rasala et al. 2014). Part of this growing popularity is due to the 
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fact that microalgae are very versatile in their utilization. Furthermore, they repre-
sent an excellent alternative to land crops: with their fast turnover rates, microalgae 
can produce large amounts of biomass in a relatively small volume and within a 
relatively short time. Furthermore, microalgae cultivation can be carried out on land 
of low agricultural value, thus avoiding competition with traditional crops. Because 
of the unique metabolic plasticity of microalgae, it is relatively easy (and certainly 
easier than for most terrestrial embryophytes) to optimize resource allocation in the 
cell to favor the production of selected compounds, by controlling culture condi-
tions. Their high photosynthetic yield and efficiency make microalgae potentially 
capable of capturing substantial amounts of CO2, thereby contributing to the mitiga-
tion of global climate change, especially if microalgae cultures can be fed with flue 
gases from fossil fuel combustion.

In spite of the foregoing considerations and although the commercial production 
of microalgae has a rather long history (e.g., Ben-Amotz 2004), progress in the 
design of production plants and, in general, in the technologies (both biological and 
engineering) used to commercially exploit algae (Table 6.1) has been rather slow. 
The causes of this are various, with a great contribution attributable to  the fact 
that  players on the market tend not to share information (Grobbelaar 2009). 
Furthermore, algal cultivation is often conducted by operators who lack a thorough 
understanding of the physiology of these organisms, thus having limited ability to 
identify and solve the problems that may arise from their functional complexity. 
This chapter intends to highlight the crucial aspects of algal physiology and to sug-
gest ways to avoid difficulties and facilitate the attainment of biomass of a defined 
quality or of specific compounds. To do so, we provide some basic information on 
how algae fix and allocate carbon and on how culture conditions can influence the 
organic composition of cells. We also discuss how the chemical composition of 
culture media affects algal growth and biomass quality. Finally, we provide exam-
ples of applications in which physiological knowledge may bring obvious 
advantages.

6.2  What Are Algae?

In the words of Raven and Giordano (2014), “algae frequently get a bad press. Pond 
slime is a problem in garden pools, algal blooms can produce toxins that incapaci-
tate or kill animals and humans and even the term seaweed is pejorative, a weed 
being a plant growing in what humans consider to be the wrong place. Positive 
aspects of algae are generally less newsworthy.” Giving a scientific sound definition 
of “algae” is not an easy task: algae are organisms that produce O2 as a waste prod-
uct of their photosynthesis, but are not “higher plants” (embryophytes) (Raven and 
Giordano 2014). According to this definition, prokaryotic (cyanobacteria) and 
eukaryotic photosynthetic organisms are algae. In the group of organisms included in 
this definition, we find organisms in an approximate size range from 1 μm to 1 mm, 
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Table 6.1 Main algal species used in biotechnological applications (the information reported in 
this table was mainly obtained from Enzing et al. 2014 and Borowitzka 2016)

Species Phylum and class Product
Production 
status

Artrospira platensis Cyanophyta, 
Cyanophyceae

Biomass as dietary 
supplement

Mass 
production

Chaetoceros muellerii Bacillariophyta, 
Bacillariophyceae

Biomass as dietary 
supplement

Small scale

Chlorella vulgaris Chlorophyta, 
Chlorophyceae

Canthaxanthin, 
astaxanthin, 
β-carotene, biomass as 
dietary supplement

Mass 
production

Crypthecodinium 
cohnii

Miozoa, Dinophyceae Docosahexanoic acid Mass 
production

Dunaliella salina Chlorophyta, 
Chlorophyceae

β-Carotene, glycerol Mass 
production

Hematococcus 
pluvialis

Chlorophyta, 
Chlorophyceae

Astaxanthin, 
cantaxanthin, lutein

Mass 
production

Isochrysis spp. Chlorophta, 
Chrysophyceae

Biomass as dietary 
supplement

Mass 
production

Nannochloropsis spp. Ochrophyta, 
Eustigmatophyceae

Eicosapentanoic acid Small scale

Nitzschia closterium Bacillariophyta, 
Bacillariophyceae

Eicosapentanoic acid Research

Nostoc commune Cyanophyta, 
Cyanophyceae

Biomass as dietary 
supplement

Collected, not 
cultivated

Nostoc flagelliforme Cyanophyta, 
Cyanophyceae

Biomass as dietary 
supplement

Collected, not 
cultivated

Nostoc sphaeroids Cyanophyta, 
Cyanophyceae

Biomass as dietary 
supplement

Collected, not 
cultivated

Odontella Bacillariophyta, 
Mediophyceae

Eicosapentanoic acid, 
docosahexanoic acid

Small scale

Pavlova lutherii Haptophyta, 
Pavlovophyceae

Biomass as dietary 
supplement

Research

Phaeodactylum 
tricornutum

Bacillariophyta, 
Bacillariophyta incertae 
sedis

Eicosapentanoic acid Small scale

Porphyridium 
cruentum

Rhodophyta, 
Protoflorideae

Biomass as dietary 
supplement, 
arachidonic acid, 
triacylglycerols

Small scale

Scenedesmus 
almeriensis

Chlorophyta, 
Chlorophyceae

Lutein, β-carotene Research

Skeletonema spp. Bacillariophyta, 
Bacillariophyceae

Biomass as dietary 
supplement

Small scale

Tetraselmis spp. Chlorophta, 
Prasinophyceae

Biomass as dietary 
supplement

Research

6 Microalgae for Industrial Purposes



136

highly phylogenetically and morphologically diverse (and this diversity has only 
been minimally explored; de Vargas et al. 2015), with an extremely broad range of 
growth rates (Fig. 6.1).

6.3  Algae Produce Biomass Through Photolithotrophy, 
Heterotrophy, or Mixotrophy

Although the ability to carry out photosynthesis is certainly a key characteristic of 
algae, they are also capable of various degrees and various modes of heterotrophy. 
For some application, the ability of algae to combine autotrophy and heterotrophy 
can be advantageous, offering the ability to stimulate growth by supplying organic 
nutrients when light is not present or insufficient and when CO2 is subsaturating. 
The ability to grow on organic substrates can also be exploited in phytodepuration 
processes that require the treatment of dissolved or particulate organic matter, in 
addition to that of inorganic nutrients. A brief description of algal trophisms may 
help the comprehension of the ensuing topics.

Fig. 6.1 The algae are extremely diverse in morphology (a), phylogeny (b), growth potential (c), 
and size (d). The information in b refers to eukaryotic algae and was derived from Knoll (2003) 
and Brodie et al. (2017). The growth rates in c are unpublished data; the species are not identified 
because of non-disclosure agreements
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6.3.1  Photolitothrophy

Photosynthesis is a mode of nutrition that uses inorganic carbon in a light- dependent 
process to generate organic compounds (photolithotrophy). In photosynthesis the 
generation of energy in the form of reductants and ATP is conducted on the photo-
synthetic membranes, which in eukaryotes are located in the chloroplast (Chen 
et al. 2015a). The photosynthetic generation of reductants is the consequence of the 
excitation of specialized chlorophyll a molecules, which initiate an electron transfer 
along a redox gradient. This redox energy is employed chemo-osmotically (Mitchell 
1961) to produce ATP, whereas the electrons are finally allocated onto soluble mol-
ecules (e.g., ferredoxins and NADPH) that can then be employed in metabolism 
(Schmollinger and Merchant 2014). The production of ATP and reductants is thus a 
function of the amount of photons captured by the so-called antenna systems, par-
tially modulable ensembles of pigment–protein complexes. The energy made avail-
able by the processes occurring on photosynthetic membranes is then employed for 
the assimilation of primarily inorganic carbon. Appreciable proportions of reducing 
power and ATP are also used to acquire and assimilate other nutrients (N, P, S, etc.) 
and for various metabolic processes. CO2 assimilation is carried out through the 
carboxylation of pentose ribulose bisphosphate (RuBP) with the catalysis of the 
enzyme ribulose bisphosphate carboxylase/oxygenase (Rubisco) (Marcus et  al. 
2011). The enzyme rubisco can also catalyze the oxygenation or RuBP, and O2 and 
CO2 compete with each other at the active sites of rubisco (Bowes et al. 1971). The 
presence of O2 in the gas phase decreases the efficiency and yield of photosynthesis 
and leads to a conspicuous increase in the energetic cost of CO2 fixation. Although 
in the course of evolution the ability of rubisco to favor carboxylation versus oxy-
genation has increased, no rubisco present today on the planet is capable of con-
ducting carboxylation in the absence of oxygenation (Giordano et al. 2005). Most 
algae (Raven et al. 2005, 2008, 2012) overcome the difficulties associated to the 
double activity of rubisco (carboxylation and oxygenation) and the low CO2:O2 
ratio in the extant atmosphere by expressing CO2-concentrating mechanisms 
(CCMs) that pump CO2 toward rubisco in an energy-dependent matter (Giordano 
et al. 2005; Raven et al. 2014). The CCMs are of various sorts and their modulation 
is strongly responsive to the CO2:O2 ratio in the environment. The activity of CCMs 
may also depend on factors that are distinct from the availability of CO2 and O2: the 
presence of CCMs allows algae to decrease the amount of rubisco in the cell and 
this leads to substantial savings in N, S, and also to an enhanced Fe and light use 
efficiency (Beardall and Giordano 2002; Raven et al. 2014); the availability of these 
resources can therefore have a role in the modulation of CCMs (Beardall and 
Giordano 2002; Raven et al. 2008, 2012, 2014). Elevated CO2 leads to the down-
regulation of CCM (Giordano et  al. 2005). CCM downregulation allows cells to 
save the energy they would otherwise have invested into pumping inorganic carbon 
toward rubisco. However, this does not necessarily create a higher growth rate, 
because the energy saved is not always invested in growth, or growth limitation 
(before the CO2 increase) may not reside in CO2 (Giordano and Ratti 2013).

6 Microalgae for Industrial Purposes
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6.3.2  Mixotrophy

Mixotrophy can be defined as the concomitant occurrence of photolithotrophy and 
chemo-organotrophy (use of exogenous organic C as the source of both energy and 
C for metabolism; also see Raven and Beardall 2016). The uptake of organic C can 
be carried out on a molecule-by-molecule basis (osmotrophy) or through the acqui-
sition of particles (phagotrophy) (Flynn et al. 2010; Raven et al. 2013). Algae are, 
for the most part, primarily photolithotrophs and recur to mixotrophy only when 
photolithotrophy is hindered by the scarcity of inorganic nutrients or light. There 
are, however, protists that, although they fall within the definition of “algae” sensu 
Raven and Giordano (2014), are primarily phagotrophic, but can photosynthesize 
under prey limitation. Finally, some organisms are obviously derived from photo-
synthetic organisms but are obligate chemo-organitrophs (Mitra et al. 2016). The 
ancestral condition in algae is probably that of obligate photolithotrophs (Beardall 
and Raven 2016), which is confirmed by the fact that basal cyanobacteria such as 
Glaeobacter violaceous (Blank and Sanchez-Baracaldo 2010) are incapable of 
chemo-organotrophy (Beardall and Raven 2016, and references therein). On the 
other hand, Raven et al. (2009) wrote that “without phagotrophy at the cell level 
there would be no photosynthesis in eukaryotes”; in other words, as the acquisition 
of the chloroplast is the consequence of a phagotrophic event, phagotrophy/mixot-
rophy appears to be an inherent property of eukaryotic photosynthetic organisms. It 
must be considered that primary endosymbiotic events, that is, those in which a 
heterotrophic prokaryote engulfed a photosynthetic prokaryote, have most likely 
been relatively rare, whereas subsequent secondary and tertiary endosymbiotic 
events, in which an eukaryote engulfed a photosynthetic eukaryote, may have 
occurred more readily (McFadden 2001; Gentil et  al. 2017; Lane 2017). Among 
extant algae, clades deriving from primary endosymbiosis are rarely mixotrophic, 
whereas mixotrophy is much more frequent in algae originated from secondary and 
tertiary endosymbiotic events (Beardall and Raven 2016). According to Raven 
(1995, 1997), the cost of the photosynthetic apparatus and the uptake systems for 
nutrients different from C sums up to about 50% of C, N, P, Fe, and of the energy 
cost to make a cell in a photolithotroph. The corresponding cost for the heterotro-
phic (phagotrophic) apparatus is less than 10% (also see Jones 2000 for further 
discussion on these matters). The advantage of mixotrophy over obligate photoli-
thotrophy and obligate photo-organotrophy emerges especially in the light (Jones 
2000), although the large number of possible nutritional conditions makes it hard to 
provide an univocal outcome of competition between organisms with different tro-
phisms. It should also be considered that chemo-organotrophy leads to greater C 
loss through respiration and thus can lead to an elemental stoichiometry with lower 
C relative to N, P, and Fe. The concomitant use of photosynthesis can compensate 
for such unbalance, to a variable degree (Beardall and Raven 2016). Osmomixotrophy 
may also be important to recapture leaked dissolved organic carbon (Raven and 
Beardall 2016).
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6.4  Cell Composition Results from a Combination 
of Genotypic and Environmental Constraints

The composition of cells is the result of the interaction of the genome with the envi-
ronment leading to the best suited structural and functional cell organization. The 
composition of the cell is thus strongly dependent on the condition in which cells 
live or are cultured. At the same time, because it depends on the genotype, cell com-
position is strongly species specific. Different genotypes will respond differently to 
the same kind of environmental perturbation, with different degrees of composi-
tional and functional homeostasis (Giordano 2013). The attitude to homeostatically 
retain cell composition is possibly also a function of growth rate: Fanesi et al. (2014) 
showed that, other things being equal, fast-growing microalgae have a lower ten-
dency to compositional homeostasis than slow-growing ones, because they have a 
higher probability of competitively taking advantage of the investment in reproduc-
tion, regardless of the duration of the perturbation (Giordano 2013). Depending on 
both the species and the type of environmental perturbations, cells can adjust their 
growth performance through (a) regulatory processes that do not require changes in 
the expressed proteome (Giordano 2013; Raven and Geider 2003); (b) the produc-
tion of new protein and the degradation of protein present before the perturbation 
was applied (acclimation); and (c) by changes in the genotype (adaptation) 
(Giordano 2013; Raven and Geider 2003). Most species, if maintained for a pro-
longed time in the same conditions, will tend to change their expressed proteome 
and acclimate to the environmental condition (Giordano 2013), and if a sufficient 
genetic heterogeneity is present in the population, genotype selection is also likely 
(Venuleo et al. 2017).

The consequences of these considerations for the commercial cultivation of 
microalgae are that (a) a tight match between genotype and cultural conditions must 
be ensured to obtain the desired end product; (b) stability of culture conditions is 
required to ensure constancy in the quality of the product and in productivity; and 
(c) a control of the genetic stability of the population is important to prevent a shift 
in dominance that may lead to the prevalence of a strain with non optimal character-
istics (from the commercial perspective).

6.4.1  Elemental Stoichiometry and Organic Cell Composition

Cell composition results from the availability of the various elements and their met-
abolic and structural requirements. Quigg et al. (2003, 2011) and Ho et al. (2010) 
reported the elemental composition for a large number of species cultured under 
presumably resource-replete conditions. The species-specificity of these cell stoi-
chiometries emerges clearly; macronutrients (i.e., C, N, P, S) generally show a 
higher degree of similarity than micronutrients across species (Giordano 2013 and 
references therein). An obvious reciprocal relationship exists between cell 
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stoichiometry and environmental chemistry; the oceanic “Redfield ratio” (Redfield 
1934) is a typical example of this. A mechanistic basis for the Redfield ratio was 
proposed by Loladze and Elser (2011), who suggested that the fairly constant ele-
mental stoichiometry of phytoplankton in the ocean, especially with respect to the 
N:P ratio, is imposed by the fact that rapid growth constrains the ratio between cell 
protein (main sink for N) and RNA (main sink for P) (e.g., Norici et al. 2011; Raven 
et al. 2012; Geider and La Roche 2002). The relative content of N:P can be used as 
a proxy for the protein to RNA ratio and this can be related to growth through the 
capacity for protein synthesis (growth rate hypothesis: Elser et al. 2011; Flynn et al. 
2010; Loladze and Elser 2011; Giordano et al. 2015b) It is worthwhile noticing, 
however, that the growth rate hypothesis does not always apply to microalgae (Flynn 
et al. 2010; Nicklisch and Steinberg 2009; but also see Giordano et al. (2015b).

In a commercial cultivation system, most likely, growth conditions are resource 
replete, which may lead to the fact that cell elemental composition does not reflect 
the requirement to achieve the maximum possible growth rate but is influenced by 
luxury accumulation of some elements (Giordano 2013).

Elemental composition is connected to the organic cell composition also because 
an imbalance between C and N (or C and P, or C and S) can lead to different C allo-
cation patterns. When, for instance, the C:N ratio is higher than the C:N ratio in 
protein and nucleic acids and the excess of C surpasses the requirement for struc-
tural non-N/P-containing pools, two options exist: the C in excess (relative to other 
nutrients) is not acquired (Kaffes et  al. 2010) or C is assimilated beyond strict 
growth requirements with a consequent increase in the size of pools that do not 
contain N and P, such as carbohydrates and lipids (Giordano et al. 2015a; Giordano 
and Ratti 2013; Montechiaro and Giordano 2010; Palmucci et al. 2011). Whether 
the excess C is allocated to carbohydrates or lipids depends on genotypic, energetic, 
and size constraints (Palmucci et al. 2011). The genotypic constraints are associated 
with the preference for some metabolic pathways by a species/strain (Palmucci and 
Giordano 2012). The energetic constrains are associated with the different cost of 
allocating C to carbohydrate or lipid and mobilizing it (Montechiaro and Giordano 
2010; Palmucci et  al. 2011); this of course becomes relevant only when energy 
availability (i.e., light; as is often the case in dense commercial cultures) limits 
growth (Ruan and Giordano 2017; Ruan et al. 2017). The spatial constraints occur 
because the lower hydration of lipids makes it easier for them to accumulate when 
space is limited (Palmucci et al. 2011). The outcome of an imbalance between C and 
N is thus not easily forecasted and should be assessed case by case.

6.5  Genetic Modification of Algae: Tools and Aims

The enormous pool of metabolic possibilities constituted by microalgae translates 
into a very large and mostly unexplored potential for applications. It also minimizes 
the need for genetic manipulations, because many functional variants are present in 
nature (although they may not all have been discovered yet). Many applicative 
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problems may be solved through the search of “natural” species/strains with the 
required metabolic capabilities. This notwithstanding, genetic manipulation is pos-
sible and, where allowed, it may offer the best solutions for specific problems 
(Gressel 2008). The generation of mutants is important for strain improvement for 
biotechnological applications, but it can also be used, in the secure space of a labo-
ratory, for functional analyses of genes and proteins. Few genetically modified 
strains of microalgae are used commercially nowadays, partially because molecular 
tools (e.g., efficient nuclear transformation, availability of promoter and selectable 
maker genes, and stable expression of transgenes) are not available for some com-
mercially important species (Amaro et al. 2011). However, recent developments of 
high-throughput technologies have enabled the profiling of mRNA, proteins, and 
metabolites, giving rise to the fields of transcriptomics, proteomics, and metabolo-
mics, respectively (Lee et al. 2010); these methodologies allow the comprehension 
of the consequences of genetic manipulation at the whole cell level, thus facilitating 
their application in a productive context.

Despite the increasing number of sequenced microalgae genomes, precise and 
programmable genome editing has been reported for only a few eukaryotic micro-
algae, such as the eustigmatophyte Nannochloropsis sp. (Kilian et  al. 2011), the 
green alga Chlamydomonas reinhardtii (Sizova et  al. 2013), the diatoms 
Phaeodactylum tricornutum (Nymark et al. 2016) and Thalassiosira pseudonana 
(Poulsen et al. 2006). The genome editing methods used for these studies (Daboussi 
et al. 2014; Hopes et al. 2016; Nymark et al. 2016; Shin et al. 2016; Wang et al. 
2016) (see following), together with the ever-growing number of tools for transgene 
expression, cloning, and transformation (e.g., Rasala et al. 2014; Scaife et al. 2015), 
open up very promising perspectives for the future of algal genetic manipulation.

The methods for targeted gene knockout and gene replacement based on homol-
ogous recombination (HR) have driven rapid progress in understanding many of the 
complex metabolic and regulatory networks in eukaryotic cells (Weeks 2011). The 
main obstacle for direct gene targeting is the low frequency of HR between nuclear 
genes and donor DNA. Recombination efficiency may be increased by the use of 
zinc-finger nucleases (ZFNs), which cut the genome at specific sites to facilitate 
HR. Sizova et al. (2013) published a nuclear gene targeting strategy for the green 
alga Chlamydomonas reinhardtii that is based on the application of ZFNs. In the 
case of C. reinhardtii, insertional mutagenesis to disrupt a gene of interest is com-
monly employed. For instance, by exploiting a collection of C. reinhardtii inser-
tional mutants originally isolated for their insensitivity to ammonium, Emanuel 
et al. (2016) found a strain that, in addition to its ammonium-insensitive (AI) phe-
notype, was unable to correctly express nitrogen assimilation genes in response to 
NO signals. The difficulty of extending this approach to more species resides in the 
fact that it cannot prescind from the existence of large collections of mutants and 
from the screening of many thousands of clones.

MicroRNAs (miRNA) are 21- to 24-nucleotide RNAs present in many eukary-
otes that guide the silencing effector Argonaute (AGO) protein to target mRNAs via 
a base-pairing process (Bartel 2009). Chung et al. (2016) showed that miRNAs in 
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C. reinhardtii regulate gene expression primarily by destabilizing mRNAs, using 
target sites that lie predominantly within coding regions.

Protein-based systems involving mega nucleases and “transcription activator- 
like effector nucleases” (TALENs) allow precisely targeted genome editing of 
eukaryotic microalgae genomes (Daboussi et al. 2014; Weyman et al. 2015). These 
systems bear great potential for research and generation of tailored strains, although 
they are labor intensive and rather costly. Recently, a much simpler and inexpensive 
method for genome editing in algae, CRISPR/Cas9, came about (Nymark et  al. 
2016). It was developed to generate stable targeted gene knockouts in the marine 
diatom Phaeodactylum tricornutum, but it should be easily adaptable for use in 
other microalgae. Shin et  al. (2016) applied this system to C. reinhardtii; they 
directly delivered the Cas9 protein and the “single-chain guide RNAs” (sgRNAs) to 
three different genes, obtaining mutations at the Cas9 cut sites with a significantly 
improved targeted mutagenic efficiency. Wang et al. (2016) established a precise 
CRISPR/Cas9-based genome editing approach for the industrial oleaginous micro-
alga Nannochloropsis oceanica, using the gene encoding nitrate reductase (NR; 
g7988) as an example. The isolated mutants, in which precise deletion of five bases 
caused a frameshift in NR translation, grew normally in the presence of NH4

+ but 
failed to grow when N was supplied as NO3

−. This demonstration of CRISPR/Cas9- 
based genome editing in industrial microalgae is very promising for microalgae- 
based biotechnological applications. Also, editing of the chloroplast genome is of 
interest for biotechnological applications, because it may allow transgene insertion 
via HR with expression that is not subject to nuclear gene-silencing mechanisms; 
furthermore, plastidial transformation may take advantage of the prokaryotic orga-
nization of chloroplast genomes to co-express multiple genes in operons 
(Wannathong et  al. 2016). New simple and inexpensive protocols have recently 
been developed to this end (Wannathong et al. 2016), but their effectiveness for spe-
cies different from C. reinhardtii is still to be demonstrated as is their applicability 
for biotechnological purposes.

Many cyanobacterial strains are amenable to transformation and homologous 
recombination. Cis genetic modification (through genome editing) is the most com-
mon approach for engineering cyanobacteria (Berla et al. 2013). Typically, chromo-
somal mutations are generated through the insertion of a plasmid that contains the 
gene(s) of interest, a selectable marker gene, and flanking sequences homologous to 
the targeted chromosomal sequence (homology arms). Numerous heterologous 
genes have been inserted through these methods in the model cyanobacteria 
Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 (Savakis and 
Hellingwerf 2015). However, genome editing of cyanobacteria is more challenging 
than in model heterotrophic prokaryotes such as Escherichia coli, primarily because 
cyanobacteria often contain multiple genome copies per cell and long-term instabil-
ity of the genes introduced (Kusakabe et  al. 2013; Ramey et  al. 2015). CRISPR 
interference is emerging as a promising method to repress expression of specific 
genes, with no need for gene knockout also for prokaryotes (Huang et al. 2016).
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6.6  How Are Algae Cultured?

Large-scale microalgal cultivation can be attained by a number of culturing sys-
tems, the choice of which depends on cost, available technology, and desired quality 
of the biomass or added-value product. Consequently, no set recipe for a successful 
cultivation exists and physiological, engineering, and economic analyses must be 
conducted to ensure good results.

Algal commercial cultivation is often conducted empirically without a full 
understanding of the physiology behind it, which can lead to unsatisfactory results 
or to products that are highly variable in quality because of the lack of control on the 
biological processes controlling biomass production.

From a trophic point of view, microalgae can be grown photolithotrophically 
(phototrophy), chemo-organitrophically (heterotrophy), or mixotrophically 
(Chojnacka and Marquez-Rocha 2004; see above). Photolithotrophic growth is 
advantageous because it can use natural sunlight as the energy source and mineral 
media, which are relatively inexpensive; it is unavoidable when obligate photolitho-
trophs are used. Light must be in large supply to sustain photolithotrophic growth 
(Perez-Garcia et al. 2011), which makes this mode of mass cultivation economically 
convenient in area with high insolation. In intensive cultures, light penetration can 
be substantially attenuated and light can become the limiting factor for growth. This 
problem is usually addressed through careful design of culturing systems. In recent 
years, a molecular approach to the problem of light availability in intensive culture 
systems has also been taken, through the production of genetically modified strains 
that have antennae of smaller size and thus a decreased light attenuation across the 
culture (Mooij et al. 2015). These strains, however, have not yet found commercial 
application and still need to be tested for productivity at a usefully large scale.

In some cases, higher productivity can be attained through heterotrophic or mix-
otrophic cultivation methods (Chen et al. 2016). Heterotrophy can be maintained in 
total darkness by supplying organic compounds (e.g., glucose, acetate, glycerol) as 
both energy and carbon source, eliminating the need for illumination but adding a 
cost for the organic substrates. The cultivation of Chlorella protothecoides (now 
Auxenochlorella protothecoides) under mixotrophic condition was reported to 
increase the yield of biomass and lipid (Wang et al. 2013). The mixotrophic cultiva-
tion of the green alga Chlorella sp. C2 in a 5-L bioreactor resulted in a maximum 
biomass productivity of 9.87  g L−1  day−1; this productivity declined to 7.93  g 
L−1 day−1 when the culture size was scaled up to 50 L (Chen et al. 2016), which is 
still a very small volume for commercial application. The change in productivity 
with increasing cultural volume warns us about the extrapolation of data obtained 
from small-scale tests to larger-scale cultivation. Cultivation on organic substrates 
currently is rarely utilized in the commercial production of algal biomass because 
the number of heterotrophic or mixotrophic algal strains that can be used is limited, 
the presence of organic carbon makes it very difficult to control bacterial prolifera-
tion, cases of growth inhibition by soluble organic compounds were reported, and 
because of the higher cost of growth media (Zhang et al. 2014a). There are however 
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applications for which mixotrophy can be useful and almost unavoidable. One 
such application, for instance, is the use of algae in wastewater treatment, where the 
water affluent cannot be fully deprived of organic components and a concomitant 
utilization of the inorganic and organic components is desirable or necessary (Cai 
et al. 2013).

In terms of the engineering of the cultivation systems, both open ponds and pho-
tobioreactors are used for algal cultivation. When very large quantities of product 
must be generated at low cost, open ponds are the most common solution (Borowitzka 
1999). However, not all species are amenable to effective cultivation in open ponds, 
and the susceptibility to weather (especially rain and temperature variations) and 
light availability makes an open pond suited mostly for tropical and subtropical 
regimes with low precipitation and cloud cover (Richmond 1986). Algae cultivation 
in open-pond production systems has been used since the 1950s (Chojnacka et al. 
2004), in both natural (lakes, lagoons, ponds) and artificial basins. Shallow raceway 
ponds, in which the algal suspension is mixed with paddle wheels, are the most 
widely used systems because they are relatively easy and cheap to construct and 
operate (Doucha and Lívanský 2006). Currently, more than 90% of world microal-
gae biomass production is obtained in raceway ponds. Some ponds are built on 
non-arable lands adjacent to power plants to have access to CO2 from flue gases or 
near wastewater treatment plants to easily access nutrient supplies. Although wide-
spread, open ponds have their drawbacks such as relatively low culture density and 
biomass productivity, high evaporative losses, and susceptibility to weather and to 
contamination by bacteria or undesired algal strains (Chen et al. 2013; Richardson 
et al. 2012).

When the environmental conditions are not suitable for open ponds, or a high 
and verifiable quality of biomass is required or biomass is used for the production 
of added-value compounds, algae can be cultured in closed or nearly closed sys-
tems, the photobioreactors (PBR). The engineering of PBRs is very diverse (Behrebs 
2005 and references therein), and there are various designs of PBRs for different 
uses and of different cost. We refer to the numerous reviews and research papers on 
these topics published in recent years for more details (e.g., Zittelli et al. 2013; Pires 
et al. 2017).

In a continuous culture system, such as most PBRs, the carrying capacity (i.e., 
maximum biomass that can be obtained) is determined by the concentration of the 
factor(s) that limit growth. If light is sufficient, the composition of the medium is 
therefore a crucial aspect in the planning of a successful production system. In most 
cases, care is taken to provide an excess of macronutrients but little attention is 
given to micronutrients and elemental stoichiometry. The consequence often is an 
imbalance in nutrient availability, resulting in unnecessary costs and lack of control 
on limiting factors (Giordano 2013). The rate of biomass production, instead, is a 
function of the rate by which limiting nutrients are supplied to the culture (dilution 
rate). A dilution rate that surpasses the genotypically fixed maximum growth poten-
tial of a strain will lead to the decrease of the cell number per unit of volume of 
culture. Dilution rates that are lower than this higher limit are sustainable. It should 
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be considered that a suboptimal growth rate may impact cell metabolism and thus 
affect biomass quality (Fanesi et al. 2014).

6.6.1  Harvesting and Dehydration of Algal Biomass

After cultivation, biomass has to be separated from the growth medium and recov-
ered for downstream processing. Harvesting usually involves two steps: (1) bulk 
harvesting (or primary harvesting), to separate the microalgae from their growth 
medium, usually done by sedimentation, flocculation, or flotation; (2) thickening 
(or secondary dewatering), to concentrate the microalgal slurry after bulk harvest-
ing, typically by centrifugation or filtration (Lam and Lee 2012; Zhang et al. 2014b). 
Thickening by centrifugation and filtration use up considerable energy and, although 
often employed, represents one of the main costs for commercial algae (and algal 
products) production. Flocculation is used to increase the efficiency of gravity sedi-
mentation (Brennan and Owende 2010). However, conventional flocculants are 
often toxic, whereas non toxic flocculants (e.g., organic polymers) are presently too 
expensive for large-scale applications (Lee et al. 2013). Autoflocculation, which can 
be induced by increasing the H+ concentration in the medium, and electrolytic floc-
culation may be used to separate algae from the medium without the addition of 
chemicals; estimates suggest that these methods would be significantly more eco-
nomical than other harvesting techniques (Beuckels et al. 2013; Coons et al. 2014; 
Lee et al. 2013). Bioflocculation is the process of flocculation induced by microor-
ganisms or by compounds they produce; it is possibly the most environmentally 
friendly among the flocculation methods (Wan et al. 2015). In a study by Wang et al. 
(2015), co-culturing of Chlorella and bioflocculant-producing bacteria was opti-
mized to decrease adverse effect of co-culturing and proved to be effective in facili-
tating harvesting; such an approach may be a good option for the collection of algal 
biomass in wastewater treatment plants, where the bacterial component is unavoid-
able. Electroflocculation is another option: Coons et al. (2014) reported that, in the 
production of algal lipids, the cost of electroflocculation with inert electrodes was 
appreciably lower than that of membrane filtration, which, in turn, was less costly 
than centrifugation. The same authors suggested that ultrasonic harvesting, which 
operates through a standing wave created by forward and reverse propagating pres-
sure waves in the water, could afford substantial economic advantages in compari-
son to other harvesting methods.

Drying of biomass is among the most expensive steps in microalgal production, 
because the evaporation of large volumes of water drains large amounts of energy; 
yet, it is usually a necessary step, because the presence of water interferes with 
transport and processing (Kumar et al. 2010). Spray, drum, freeze, and solar drying 
are commonly applied methods. Solar drying is economical, but it requires large 
extensions of land and is not feasible in temperate climates, where sunlight is not 
always sufficient (Zhang et al. 2014a).
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Another common problem in algal commercial cultures is the identification of 
the appropriate time for harvesting. A method that appears especially suited for such 
task is Fourier-transform infrared spectroscopy (FTIR) (Domenighini and Giordano 
2009; Giordano et al. 2001). A number of papers have proved the reliability, rapid-
ity, and low cost of this methodology, which affords a snapshot of cell composition 
(Jebsen et al. 2012; Montechiaro and Giordano 2010; Palmucci and Giordano 2012; 
Palmucci et al. 2011) and allows reliably following changes in biomass quality over 
time (Giordano et al. 2017; Giordano and Ratti 2013; Memmola et al. 2014). The 
advantage of FTIR is that various organic pools can be determined concomitantly, 
with no need for extractive procedures and in quasi-real time. The disadvantage is 
that, in complex whole-cell spectra, the identification of specific compounds or 
small pools may not be easy (and sometimes is not possible). In these cases, other 
methodologies may be better suited. For lipids, fluorescent probes such as the lipo-
philic Nile red and BODIPY 505/515 can be used; these compounds can detect 
neutral lipids in intact cells (Cooper et al. 2010). However, the relatively long time 
required for staining and detecting the fluorescent probe, the relatively high cost of 
the probe, and the potential errors caused by the different permeability of the probes 
into different microalgae cells represent drawbacks of the use of these molecular 
probes. Qiao et al. (2015) developed a method to determine the optimal harvest time 
in oil-producing microalgal cultivations by measuring maximal photosystem II 
quantum yield (Fv/Fm); although this method afforded good results, it must be con-
sidered that Fv/Fm is associated with a number of events occurring within the cells 
and is not highly specific.

6.7  Products and Applications

6.7.1  Biofuels from Algae

Microalgae can, in principle, be used for the production of several different types of 
biofuels: biodiesel can be obtained from algal oil (Ahmad et al. 2011), biomethane, 
also known as biogas, can be produced through anaerobic digestion of algal biomass 
(Frigon et  al. 2013), hydrogen can be generated photobiologically (Zhang et  al. 
2012), and bioethanol can be produced in the dark by anaerobic fermentation 
(Bigelow et al. 2014). The production of these biofuels can be combined in the same 
process, because the residue of the oil extraction for biodiesel production can be 
further processed into ethanol, methane, or H2 (Mata et  al. 2010; Singh and Cu 
2010) (Fig.  6.2). The literature on algal biofuels is vast (e.g., Demirbas 2009; 
Kapdan and Kargi 2006; Mata et al. 2010; Spolaore et al. 2006). We shall therefore 
not linger on details in this section of our review. In spite of the broad interest in 
algal biofuels, the actual commercial production of such forms of renewable energy 
is, to say the least, limited: the very large volumes of cultures required to obtain a 
meaningful quantity of biofuels, together with the still relatively low price of fuels 

M. Giordano and Q. Wang



147

derived from fossil oil and other sources, is still in the way of a significant exploita-
tion of algal fuels (Borowitzka 2016 and references therein).

6.7.1.1  Biodiesel

Biodiesel production comprises six steps: (i) strain selection; (ii) cultivation; (iii) 
biomass harvesting; (iv) biomass drying; (v) lipids extraction; and (vi) transesterifi-
cation (Zhang et al. 2014b). We have already provided information on the first four 
steps; thus, the ensuing paragraphs focus on lipid extraction and transesterification.

Before lipid extraction, cells are usually lysed to facilitate access of the solvents 
to lipids within the cells. Various lysis procedures can be used: high pressure 
homogenization (HPH) (Samarasinghe et  al. 2012), bead mills (Doucha and 
Lívanský 2008), ultrasonic disruption (Adam et al. 2012; Bigelow et al. 2014), and 
electroporation (Sheng et al. 2011). Ultrasonic disruption is possibly the procedure 
with the lowest energy requirement (Coons et al. 2014). Subsequently, lipids and 
fatty acids are extracted from the microalgal slurry mainly by two methods: the 
hexane Soxhlet method and the Bligh–Dyer method (Demirbas 2009; Kanda et al. 
2013). Hexane-based oil extraction is more energy efficient and is therefore pre-
ferred for scaling-up efforts (Peralta-Ruiz et al. 2013). However, the use of chemical 
solvents has intrinsic problems associated with the toxicity of these compounds to 
humans and environment. Several supercritical fluids, especially supercritical CO2, 
have been used for microalgal lipid extraction for the production of biodiesel. 
Although supercritical extraction is nontoxic and provides a nonoxidizing environ-
ment that avoids degradation of the extracts (Mouahid et al. 2013), it is expensive.

After lipid extraction, fatty acids transesterification is generally used to produce 
biodiesel (Lam et al. 2010). Lipid extraction and transesterification can be carried 
out simultaneously, simplifying the process and reducing the overall cost of 

Fig. 6.2 The overall process flow for microalgal biofuel production
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microalgal biodiesel production (Lam and Lee 2012). Biodiesel recovery in in situ 
transesterification is negatively affected by excessive biomass moisture (>20% m/m) 
(Sathish et al. 2014). Given the aforementioned high cost of biomass dehydration, 
this excessive moisture has a nontrivial effect on the economic performance of the 
production system. An improved in situ transesterification process that directly 
converts wet oil-bearing microalgal biomass into biodiesel was recently proposed 
(Dang-Thuan et al. 2013).

6.7.1.2  Other Microalgal Biofuels

Bioethanol
Most microalgae do not contain lignin; this property of algal biomass facilitates the 
enzymatic hydrolysis necessary for bioethanol production (Sun and Cheng 2002). 
Furthermore, in appropriate culture conditions, many algal species can accumulate 
high amounts of ethanol if substrates can be fermented (Bibia et al. 2017; Farias 
Silva and Bertucco 2016). Green algae of the genera Scenedesmus, Chlorella, 
Chlorococcum, and Tetraselmis and cyanobacteria of the genus Synechococcus have 
been reported to be potentially good sources of bioethanol (Farias Silva and Bertucco 
2016). Typically, bioethanol is produced by the hydrolysis of sugars and their sub-
sequent fermentation in microaerobic or anaerobic conditions using yeasts (Farias 
Silva and Bertucco 2016). Algae can generate ethanol directly in the dark, by fer-
mentative metabolism (Ueno et al. 1998); however, this process does not seem to be 
sufficiently efficient for commercial exploitation. Algae can also produce ethanol 
directly via photofermentation (photanol) (Hellingwerf and Mattos 2009). In photo-
fermentation, the glyceraldehyde-3-phosphate generated in the Calvin cycle is con-
verted to phosphoenolpyruvate and then to pyruvate; pyruvate is decarboxylated to 
acetaldehyde (by pyruvate decarboxylase), which is finally converted to ethanol by 
alcohol dehydrogenase. Some engineered cyanobacteria have been made able to 
directly produce ethanol (and other compounds) through photofermentation in 
amounts and rates that appear to be compatible with their commercial exploitation 
(Farias Silva and Bertucco 2016 and references therein).

Molecular Hydrogen
Some green microalgae are capable of H2 generation, a clean fuel with H2O as the 
only major by-product. As opposed to non biological production processes, bio-H2 
can be produced at ambient temperature and pressure and has no demand for metal 
catalysts. The matter has been excellently summarized by Eroglu and Melis (2016). 
We shall therefore not overly linger on this theme and simply mention that two 
light-dependent electron transport pathways leading to H2 production have been 
identified in Chlamydomonas reinhardtii: one draws electrons from water lysis at 
photosystem II, and the other uses the reducing power allocated on quinones through 
their reduction by hydrogenase. Also, a light-independent fermentative pathway 
leading to H2 production has been identified in C. reinhardtii (Eroglu and Melis 
2016). Incompatibility of simultaneous O2 and H2 evolution from microalgae has so 
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far hindered the development of large-scale bio-H2 production (Rajvanshi and 
Sharma 2012). By using artificial miRNA (amiRNA) technology, a transgenic 
knockdown C. reinhardtii strain for the oxygen-evolving center (OEE2 gene) was 
obtained; in this strain, O2 is not released and the H2 yield is about twofold higher 
than that of the wild type under similar growth conditions (Ngan et al. 2015).

Biogas
Microalgal biomass represents a potential alternative to biogas production from ter-
restrial crops (Dębowski et  al. 2013). Photoautotrophically grown Scenedesmus 
obliquus, when used as biogas substrate, proved to produce more methane than 
maize silage (Wirth et al. 2015). However, a number of difficulties are associated 
with the use of algae for biogas production. For instance, the cell walls of some 
algae are resistant to anaerobic digestion and some algal strains generate com-
pounds that are toxic to the bacteria that carry out anaerobic digestion; furthermore, 
in some cases, the C:N ratio of algae is unfavorable to anaerobic digestion (Dębowski 
et al. 2013 and references therein). This notwithstanding, the high turnover rate of 
algae and the possibility of selecting strains with suitable elemental stoichiometry 
make algae very interesting candidates for biogas production (Mussgnug et  al. 
2010). Some authors have also reported that when algae are mixed with traditional 
feedstocks they improve the efficiency of biogas production (Mussgnug et al. 2010; 
Zhong et al. 2012). Miao et al. (2014) showed that co-digestion of cyanobacteria 
with swine manure leads to an improved efficiency of both biodegradation and 
methane production as compared to the same processes without the addition of the 
algae. Zhao and Ruan (2013) also demonstrated the feasibility of adjusting the C/N 
ratio to increase biogas production by the addition of algae (mostly Microcystis) to 
kitchen wastes.

6.7.1.3  Challenges and Solutions for Algal Biofuel Production

Microalgal biofuel production is presently not conducted on a large scale because 
overwhelming investments in capital and operation are required (Chen et al. 2015b; 
Zhu 2015). In the case of biodiesel, for instance, the species that are known to be 
highly oleaginous often grow slowly. In such case, genetic manipulation may be 
advantageous and possibly necessary to obtain strains that can ensure sufficiently 
high productivity to make biodiesel production economically viable (Anandarajah 
et al. 2012; Iwai et al. 2014). It should also be considered that monocultures are 
susceptible to contamination, especially in conditions that intrinsically do not allow 
a tight control of the microbiota (e.g., wastewater); strains that grow slowly, such as 
the oleaginous ones, are especially likely to be outperformed by faster-growing 
competitors (Chen et al. 2015b). Mixed cultures of algae have been reported to per-
sist in wastewater treatment systems and to be more stable and more resistant to 
exogenous invasion than monocultures (Chen et  al. 2015b). This report would 
however need to be confirmed under a wider range of conditions; also, in-culture 
evolution (Borowitzka 2016) may have a stronger role in mixed cultures than in 
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monospecific cultures because of the selective pressure exerted by interspecific 
interaction (Venuleo et al. 2017). Some algal species used in large-scale open-pond 
commercial production are restricted to geographic locations with warm climates 
and would be unable to grow at acceptable rates during the hot or cold seasons of 
certain geographic regions (Holbrook et al. 2014). One solution to this problem is to 
identify indigenous algae that are adapted to the local environment (Holbrook 
et al. 2014).

Lipid accumulation occurs within microalgal cells according to the general prin-
ciples outlined in previous publications (Giordano 2013; Palmucci et  al. 2011; 
Raven and Giordano 2016). Zhang et al. (2013) suggested a possible connection 
between the oxidative stress induced by N-shortage and neutral lipid accumulation; 
applications of N-limitation or starvation, however, are inefficient methods to 
increase lipid accumulation because they can also significantly lower biomass and 
lipid productivity (Borowitzka 2016). A two-stage cultivation strategy has often 
been proposed for the production of stress-induced algal compounds (Borowitzka 
(2016) and references therein), in which a full-strength medium is used to promote 
biomass buildup, followed by a stress treatment (e.g., N-starvation; Zhu et al. 2014) 
to trigger the accumulation of the target compound. Also, “mid-point” approaches 
(i.e., compromises between best condition for growth and production of the com-
pound of interest) have been suggested to simplify processes and decrease produc-
tion costs (Borowitzka 2016). Zhu et al. (2016) proposed a single-step approach for 
boosting lipid production: these authors showed that the addition of trace amounts 
of urea to the growth medium significantly stimulated the accumulation of neutral 
lipids without affecting growth rates.

6.8  Microalgae for Bioremediation

6.8.1  CO2 Fixation and Flue Gas Treatment

Carbon is the main nutrient in microalgal cells (36–65% of dry matter). It is there-
fore extremely alluring to use algae to sequester CO2, at least temporarily (Singh 
and Ahluwalia 2013). The frequent suggestions to utilize algae for this purpose have 
rarely considered the physiological nuances of the responses of algal cells to ele-
vated CO2. As explained earlier, the excess CO2 may be not taken up by the cells 
(thus conferring no advantage and only increasing the cost of new biomass produc-
tion) or it is assimilated and subsequently elicits a nutritional unbalance leading to 
a change in biomass quality (Beardall and Giordano 2002; Giordano and Ratti 2013; 
Lynn et al. 2010; Palmucci et al. 2011; Raven et al. 2011, 2012). Also, the impact of 
elevated CO2 on growth rates is variable, mostly species specific, and depending on 
energy availability (Beardall and Giordano 2002; Raven et al. 2011, 2012; Wu et al. 
2012). Nevertheless, the utilization of algal biomass for the mitigation of CO2 emis-
sion has its merits, provided that appropriate strains and suitable culture conditions 
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are selected and consideration is given to the fact that biomass will in the end release 
the CO2 that it fixed. Liu et al. (2013) described a high-throughput screening method 
to rapidly identify microalgae strains that can tolerate high CO2 condition or flue 
gases. Microalgae reported to tolerate high levels of CO2 include Chlorella sp. (Qi 
et al. 2016), Scenedesmus sp. (Liu et al. 2013), and Dunaliella tertiolecta (Farrelly 
et al. 2013). Jacob et al. (2015) estimated that algal cultivation systems, whether 
they are tubular or flat photobioreactors or open ponds, can allow an effective and 
significant conversion of the CO2 emitted by coal power plants into biomass. Once 
again, this work does not take into account the complex physiology associated with 
CO2 fixation, but it does show that, at least in principle, algal cultivation can be 
coupled to industrial activity to minimize environmental impact. Experimental evi-
dence (although in small-scale experiments) showed that the addition of flue gases 
to cultures of Scenedesmus quadricauda afforded a decrease by 85% v/v of CO2, 
(and also 62% v/v of NOx and 45% v/v of SOx) in the flue gas; somewhat lower fixa-
tion capacities were obtained using Botryococcus braunii and Chlorella vulgaris 
(Kandimalla et al. 2016). Interestingly, the amount of fixed gases increased if the 
algae were cultured in mixotrophic conditions.

Flue gases contain different NOx species, most of which are restricted by legisla-
tion and therefore must be removed (Van Den Hende et al. 2012). NOx may serve as 
a nitrogen source for microalgae cultivation (Chen et al. 2016; Raven and Giordano 
2016; Zhang et  al. 2014a). Thus, “denoxification” (DeNOx) by microalgae (bio- 
denox) may be a worthy contribution to flue gas treatment. As the efficiency of NOx 
removal by microalgae varies dramatically among species, it is necessary to select 
or genetically modify suitable algal candidates for this purpose. Some strains of the 
genera Chlorella, Scenedesmus, and Dunaliella have been reported to significantly 
remove NOx (Jin et al. 2008; Nagase et al. 2001; Santiago et al. 2010; Kandimalla 
et al. 2016), although high levels of NOx tend to depress photosynthesis. In a typical 
flue gas from incineration processes, about 90–95% of the NOx is given by NO 
(Fritz and Pitchon 1997). When NO dissolves in water, it is oxidized to nitrite and 
nitrate (Niu and Leung 2010). Nitrite has an inhibitory effect on algal growth, which 
is exerted through a retardation of electron transfer from QA to QB (QA is a bound 
quinone; QB is a quinone that binds and unbinds to photosystem II), and by interfer-
ence with the donor side of PSII (Zhang et al. 2017). The screening of nitrite- tolerant 
microalgae species is therefore crucial for the use of algae in DeNOx approaches. Li 
et al. (2016) analyzed numerous Chlorella strains in this respect and found that the 
degree of nitrite tolerance was a strain-specific feature, although most Chlorella 
strains showed the ability to withstand high concentrations of nitrite. The nitrate and 
nitrite generated by the dissolution of NO in water can be directly assimilated by 
algae (Giordano and Raven 2014; Raven and Giordano 2016); NO dissolution is 
however rather slow and often limits the rate of combined nitrogen assimilation. 
Zhang et  al. (2014a) reported on a two-step microalgal bio-DeNOx roadmap, in 
which NOx-rich flue gases were first fixed, mostly as nitrite, to flue gas fixed salts 
(FGFS), and then used as nitrogen source for Chlorella sp. cultures. By using FGFS 
with NO2

- equivalent to 5-fold that in the common culture medium BG11 (Stanier 
et al. 1971), up to 60% v/v of the NOx was removed from the medium with an 

6 Microalgae for Industrial Purposes



152

inoculated cell density of 0.07 g DW L−1, together with the production of 33% algae 
lipids (Zhang et al. 2014a). The mixotrophic cultivation of Chlorella sp. with FGFSs 
and glucose achieved an overall DeNOx efficiency of 96%, demonstrating the feasi-
bility and practicality of efficient biological DeNOx by microalgae (Chen et  al. 
2016).

In most incineration flue gases, SOx are also present; they mainly consist of SO2, 
with a minor contribution (2–4% v/v) by SO3; both SO2 and SO3 are highly soluble 
in water; SO2 tends to hydrate to H2SO3, which dissociates in protons and sulfite (at 
pH >6) and bisulfite (prominent between pH 2 and 6); SO3 hydrates to H2SO4, which 
typically dissociates in protons and sulfate (SO4

2−); SO4
2− tends to prevail at pH 

>1.9; also the oxidation of H2SO3 can generate H2SO4 and SO4
2− (Stumm and 

Morgan 1981; Van Den Hende et al. 2012 and references therein). The dissolution 
of SOx, therefore, causes acidification of the medium, the extent of which depends 
on the SOx content of the flue gas, which is a function of the combustion substrates 
from which it was generated. The consequence of SOx dissolution in the growth 
medium can be such to limit the choice of algae to acidophilic and/or bisulfite-tol-
erant strains (see Van Den Hende et al. 2012 and references therein for details); in 
some cases, scrubbing SOx from the flue gas may be a precondition for any micro-
algal treatment. If acidity and toxicity of SOx-derived solutes do not prevent algal 
survival, algae can assimilate substantial amounts of SO4

2− (Norici et al. 2005; Ratti 
et al. 2011; Giordano and Raven 2014; Prioretti and Giordano 2016), compatibly 
with elemental stoichiometry in the growth medium and stoichiometric constraints 
of cell growth (Giordano 2013).

6.8.2  Wastewater Treatment by Microalgae Cultivation

Large-scale microalgae culture may compete with crops and human activities with 
respect to water usage. Large amounts of nitrogen and phosphorus are also required, 
and their cost is high (Lardon et al. 2009). Both water and nutrients can be obtained 
from wastewaters; culturing algae in wastewaters also affords obvious environmen-
tal benefits. Microalgae are very effective at removing nitrogen, phosphorus, and 
toxic metals from wastewaters, producing cleaner effluents with high concentra-
tions of dissolved oxygen (Gomez et  al. 2013). Cabanelas et  al. (2013) used 
Chlorella vulgaris for nitrogen and phosphorus removal from municipal wastewater 
with the highest removal rates of 9.8 (N) and 3.0 (P) mg l−1 days−1. Some studies 
also reported on the cultivation of microalgae in sewage under mixotrophic condi-
tions. Cheng et al. (2013) found that mixotrophic microalga–bacteria systems sig-
nificantly promoted algal growth and nutrient removal efficiency; maximal biomass 
and lipid productivity was attained when the alga Desmodesmus sp. CHX1 was used 
to treat piggery wastewater. Moreover, the co-culture of microalgae and bacteria in 
wastewater was reported to obtain 50–60% and 68–81% dissolved organic carbon 
(DOC)  removal efficiency from municipal and industrial wastewater mixtures, 
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respectively (Nielsen  2015). Zhou et  al. (2012) developed an effective organo- 
photolithotrophic system for improved wastewater nutrient removal, wastewater 
recycling, and enhanced algal lipid accumulation with Auxenochlorella protothecoi-
des UMN280. Carbohydrate-rich and nitrogen-deficient solid wastes and some food 
industry wastewaters, such as olive mill wastewater, can be also used for hydrogen 
production (Keskin et al. 2011). It was reported that photosynthetic H2 evolution 
from C. reinhardtii grown in advanced solid-state fermentation wastewater was 
increased by more than 700% compared to the cells grown in TAP medium (Chen 
et al. 2014). A study was also carried out to evaluate the potential of the green alga 
Scenedesmus obliquus grown in different concentrations of wastewater to produce 
biomass rich in sugar to produce bioethanol by fermentation processes; it was found 
that the highest removal efficiency of biological oxygen demand (BOD) and chemi-
cal oxygen demand (COD) were 18% for S. obliquus grown under aeration condi-
tions and that the highest ethanol efficiency of biomass hydrolysate was 20.33% 
(Hamouda et al. 2016). Also, biomethane production in digesters could be improved 
by the addition of microalgae biomass harvested from algae-based swine wastewa-
ter digestate (Perazzoli et al. 2016). Because of the complex nature of wastewaters, 
issues such as contamination, inconsistent wastewater components, and unstable 
biomass production hinder efforts to use wastewater for large-scale algal cultivation 
(Cai et al. 2013).

The combination of CO2 and/or NOx fixation from flue gases and nutrient removal 
from wastewaters may provide a very promising alternative to current bioremedia-
tion strategies; the concomitant supply of nutrients from the gas and the liquid phase 
synergistically increases the effectiveness of depuration by algae (Chen et al. 2015b) 
and also stimulates algal growth and accumulation of added-value metabolic prod-
ucts (e.g., lipids) within the cells (Devi and Mohan 2012). Chinnasamy et al. (2010) 
cultured Chlamydomonas globosa, Chlorella minutissima, and Scenedesmus bijuga 
in untreated wastewater from the carpet industry to which a gas stream containing 
5–6% v/v CO2 was added; biomass productivity reached 5.9–21.1 g m−2 day−1. The 
cyanobacterium Aphanothece microscopica Nägeli cultivated in a photobioreactor 
using supplemented wastewater from an oil refinery was found to assimilate CO2 
when light was present; the capacity for CO2 sequestration was lowered by one 
fourth when the algae were cultured in a light/dark photoperiod rather than under 
continuous light (Jacob-Lopes et al. 2010). The other important finding of this study 
was that only a small portion (about 3% v/v) of the CO2 sequestered during cultiva-
tion was in the end effectively fixed in algal biomass, whereas the rest was probably 
released as biopolymers or volatile organic compounds. This finding is a warning 
about the direct extrapolation to commercial application of physiological studies 
that do not include a thorough analysis of biomass.

Recently, the use of microalgae for the concomitant remediation of environmen-
tal pollution and biofuel production has also been proposed; this would allow 
decreasing energy, nutrients, water cost, and also CO2 emissions (Chen et al. 2015b; 
Sun et al. 2013), making biofuel production from microalgae more environmentally 
sustainable, cost-effective, and profitable (Chen et  al. 2015b; Nayak et  al. 2016) 
(Fig. 6.3).
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Chlorogonium sp. showed good potential in the simultaneous purification of 
saline sewage effluent and CO2 sequestration while delivering feedstock for poten-
tial biofuel production in a waste-recycling manner, achieving high removal effi-
ciencies of NH3-N, NO3

−-N, TN, and PO4
3−-P, at a CO2 consumption rate of 

58.96 mg l−1 day−1, and lipid content of 24.26% m/m of the algal biomass (Lee et al. 
2015). An economically viable algal biofuel-based DeNOx process using Chlorella 
was evaluated and verified in actual industrial flue gas condition by Zhang et al. 
(2014a). To reduce the mismatch between the large amount of NOx contained in flue 
gases and the relatively low capacity for its assimilation in photolithotrophic algal 
growth, the possibility of managing NOx by culturing oil-producing Chlorella 
strains mixotrophically was tested (Chen et al. 2016). After a stepwise optimization 
of mixotrophic cultivation of Chlorella using FGFS, an impressive DeNOx effi-
ciency of more than 96%, with a biomass productivity of 9.87 g l−1 day−1 and a high 
lipid productivity of 1.83 g l−1 day−1, were obtained.

6.9  Microalgal Cultivation for Food or Feed Production

The large and increasing demand for animal feed exerts a tremendous pressure on 
food crops, because, on a purely economic basis, the conversion of land use from 
crops (for humans) to animal feed production is more profitable; this trend is, how-
ever, in obvious conflict with the need to support the increasing human population 
on our planet. Microalgae can be effectively and conveniently used as animal feed 
(Norambuena et  al. 2015; Packer et  al. 2016; Tibbetts et  al. 2017; Vidyashankar 
et al. 2015); furthermore, their cultivation poses minimal or no threat to crop pro-
duction (Vidyashankar et al. 2015). The nutritional and bioactive effects of microal-
gal biomass have been assessed in a variety of studies (Benemann 2013; Wells et al. 
2017). The composition of algae, whose cells are rich in carotenoids and other 

Fig. 6.3 Flowchart of the combination of environmental pollution control and biofuel production
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antioxidants, essential polyunsaturated fatty acids, minerals, and protein with a bal-
anced amino acid profile, makes them an excellent alternative to conventional feed-
stocks such as corn, soya, barley, and skimmed milk (Shields and Lupatsch 2012). 
There are several examples of the utilization of algae for animal feed: Chlorella 
vulgaris has been used for the development of pet and fish feed (Groza et al. 1966; 
Li et al. 2015); Dunaliella can be used directly as a nutritional additive for fish or 
for secondary biological baits (such as rotifers and Artemia) and other aquacultured 
animals (Del Campo et al. 2007; Elbermawi 2009); Spirulina maxima has been used 
in swine feed (Saeid et al. 2013). Several studies have suggested that small amounts 
(2.5–10% of the diet) of algae in fish diets result in higher growth rates, feed utiliza-
tion efficiency, carcass quality, physiological activity, intestinal microbiota, disease 
resistance, stress response, modulation of lipid metabolism, and protein retention 
during periods of reduced feed intake, and also lead to a higher palatability in sea 
urchin formulated feed (Cyrus et  al. 2015; Valente et  al. 2006; Nakagawa 1997; 
Norambuena et al. 2015; Wassef et al. 2005).

The widespread and growing interest in algae as food and food complements for 
humans emerges clearly in the recent literature (Cottin et al. 2011; Hafting et al. 
2015; Harnedy and Fitzgerald 2011; Knies 2017; Packer et al. 2016; Pangestuti and 
Kim 2011; Sinéad et al. 2011; Wells et al. 2017). Limiting our excursus to microal-
gae (see Packer et al. 2016 for a panorama on macroalgae used for food), numerous 
species have been traditionally grown or have been collected as food: Nostoc 
sphaeroides, for instance, is a edible cyanobacteria widely cultivated in Hubei 
Province, China (Yi et al. 2016); there is evidence that in Central America the Aztecs 
were already eating cyanobacteria (Spirulina) collected from lakes in the fifteenth 
century; populations inhabiting the banks of Chad Lake, in Africa, have also tradi-
tionally used the cyanobacterium Arthrospira (formerly Spirulina) (Reed et  al. 
1985). Arthrospira was possibly the first microalga that spread widely across the 
shelves of supermarkets and “natural food” shops; this species encountered the 
favor of consumers for its rich protein, linolenic acid, and phycocyanin content. 
Nowadays, China is the main producer of Spirulina in the world (Lu et al. 2011). 
Also, Dunaliella salina encountered substantial success by its high content of 
β-carotene, an antioxidant in its own right and a precursor of vitamin A, with the 
first large production plants becoming operative in the 1980s in Israel, Australia, 
and the USA (Borowitzka 2016 and references therein). In more recent years, the 
fad of natural nutritional complements has facilitated the expansion of the market 
for nutritional products from algae, to which, with variably sound scientific bases, 
antioxidant, antibacterial, antiinflammatory, antiviral, and anti-cancer functions, for 
example, have been attributed (Wells et al. 2017). The consumption of microalgae 
as food has also, to some extent, been driven by the producers, who with the decline 
of profitability in algal biofuels have looked for alternative uses of their biomass 
(Packer et  al. 2016). More species are now cultured in large-scale plants for the 
production and commercialization of β-carotene, astaxanthin, phycocyanin, some 
fatty acids (including Ω-3 and Ω-6), and other bioactive substances (Borowitzka 
2016). Chlorella has been marketed as a health food because of its alleged ability to 
stimulate the human immune system; and its production is mainly distributed in 
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Japan, China, France, Portugal, and South Korea (An et al. 2008; Liu and Hu 2013; 
Saad et al. 2006). The green alga Haematococcus pluvialis can accumulate carot-
enoids, mostly astaxanthin and its ester derivatives, when subject to nutrient limita-
tion, high temperature, or excessive light (Borowitzka 2016); these compounds have 
a high value on the market as antioxidants (Bagchi et al. 2001; Hagen and Grunewald 
2001). The mass culture of H. pluvialis is mainly concentrated in Japan, Israel, and 
the USA (Gómez et al. 2013). Also, some heterotrophic species, such as the dinofla-
gellate Crypthecodinium cohnii and the labyrinthulid Ulkenia, have been used for 
production of docosahexaenoic acid (DHA), which has been proposed as a baby 
food additive (Ganuza et al. 2008; Lee Chang et al. 2014).

6.10  Conclusions

In the light of all these facts, it seems fair to conclude that, although some applica-
tions of microalgal cultivation appear not to be economically sustainable, at this 
point in time (e.g., the still fashionable use of these organisms for the sole produc-
tion of biofuels), the use of microalgae in large-scale multifunctional plants is fea-
sible and promising. Also, the direct use of algal biomass for human and animal 
nutrition or for the production of nutritional complements appears to have a positive 
outlook in terms of market demand and economic sustainability. However, further 
studies must be conducted, both on the engineering aspects of large-scale algal cul-
turing systems and, possibly more importantly, on the specific challenges that 
industrial applications pose to algal physiology (e.g., responses to high CO2, NOx, 
and SOx concentration, temperature, and low light penetration; C allocation under 
different growth regimes) and on the functional diversity of algae, which has been 
only marginally explored.
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