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Background and Objectives of the Study 
 
We assembled an experienced group of international scientists1 in fisheries, aquaculture 
and the social sciences to conduct a marine science assessment of capture-based tuna 
aquaculture (CBTA) in Mexico. The binational group conducted multidisciplinary  
reviews of bluefin tuna and Pacific sardine fishing and ranching as impacted by CBTA 
in order to inform the  bluefin tuna and sardine fisheries/aquaculture policy, science, 
and government communities in Mexico and internationally. The work was based over 
approximately a 2-year period at the Universidad Autonoma de Baja California (UABC) 
in Ensenada, Mexico, with contributions from multiple Mexican and US institutions. 
 
This scientific assessment of the status of CBTA in the Ensenada region of Baja 
California, Mexico includes a review of all available published and unpublished data 
sources as well as from extensive interviews with stakeholders, but cannot be 
considered complete since not all of the data sources in government, on ranches, or in 
the offices of multinational corporations were available to the team. Our science team 
relied upon published and unpublished studies that were made available upon request; 
as such, we can only capture available details in 2006-2007. CBTA ranches are complex 
and dynamic, and even if a complete information base was available to us, we believe 
this review presents an accurate as possible story, since we have brought together many 
recent studies from Mexico and elsewhere, and have identified what is known or not. 
Plus, we have given our collective, expert scientific opinions on this information, so that 
we have identified knowledge gaps, and made recommendations for future directions. 
 
This report is based upon findings of the multidisciplinary assessments regarding the 
current situation of Northern Pacific bluefin tuna farming in Mexico and identifies 
current status of Mexican tuna and sardine stocks, and aquaculture culture practices, 
plus presents knowledge gaps and recommended actions. The main objectives of these 
studies were to conduct: 
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I. Fisheries Assessments of Tuna and Sardines: Assemble, analyze, and synthesize 
the existing scientific basis of Pacific tuna and sardine stocks in terms of fish 
abundances, distributions, size classes, migration patterns, fishing pressure, and 
impacts of capture-based tuna aquaculture. 
 

II. Aquaculture Assessments: Husbandry, aquaculture production networks, 
management structures, live feed and nutrition issues; environmental impacts; 
disease reports, management and control procedures. 
 

III. Governance and Social Assessments: Assemble, analyze, and synthesize the 
existing locations and document sites; current governance and regulatory 
frameworks, access rights, quotas and farm leases, worker conditions, labor 
issues, entitlements, transferability schemes, and permitting issues. Conduct 
social science evaluations of interactions between tuna and sardine fishers and 
tuna farming operations. 

 
Executive Summary 
 
Northern Bluefin Tuna (NBT, Thunnus orientalis) are found in the Eastern Pacific Ocean 
(EPO) from the Gulf of Alaska to southern Baja California and in the Western Pacific 
Ocean (WPO) from the Sakhalin Islands to the northern Philippines. They are usually 
oceanic but seasonally come close to shore, school by size, and tolerate a wide range of 
temperatures. They spawn in the WPO in the vicinity of Okinawa, Japan and the 
Philippine archipelago, then disperse to other areas of the WPO. Some fish apparently 
remain their entire lives in the WPO, while others migrate to the EPO during their first 
and second years of life. Fish in the EPO have an increasingly restricted north-south 
distribution as they grow older. Migrations between and within the WPO and EPO are 
related to oceanographic and prey conditions. Fish migrate back to the WPO between 
ages 2-3. During El Niño events, NBT are distributed further to the north in the EPO and 
catches decrease. Large impacts related to changes associated with global warming may 
limit the amount of NBT available off Baja California. Japan currently accounts for about 
64% of the catch of NBT in the North Pacific Ocean (NPO). The other two nations 
involved in this fishery to a significant degree are Taiwan and Mexico. Catches 
historically have been 2-3 times higher in the WPO than in the EPO. The catch in the 
EPO in 2006 was ~10,000 metric tons (MT). Most of the catches in the EPO are fish of 
ages 1-3. Modeling studies have shown that a strong recruitment event occurred in 2001 
and could maintain NBT spawning stock biomass until ~2010. The results of yield-per-
recruit and cohort analyses indicate that greater catches in the NPO could be obtained if 
the catches of ages 0 and 1 fish were reduced or eliminated, mainly in the WPO. 
Increased fishing pressure on NBT juveniles from CBTA would not necessarily decrease 
recruitment, since spawner-recruit analyses indicate that the recruitment of NBT would 
not necessarily increase by permitting more fish to spawn. Even though fishing 
mortality (F) has been higher than FMAX,, or is above the reference point, recruitment 
overfishing has not occurred. Nevertheless, it is recommended that fishing mortality not 
be further increased and catches reduced. According to international institutions 
(IATTC, ISC and FAO), NBT is “Fully Exploited”. NBT is not included on the IUCN red 
list. There is no scientific evidence that NBT are overfished in the NPO. Estimated 
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retained catches of NBT have fluctuated widely between 500 and 10,000 MT in the EPO 
over the last 30 years (from 1976 to 2006). Regarding the CBTA activity, there is no 
evidence that it has affected the NBT stock since its beginning in 1996. Considering that 
not all NBT migrate to the EPO, increasing the catch of NBT would not necessarily 
decrease recruitment. Current CBTA production levels do not appear to compromise the 
NBT stock. However, catches of NBT juveniles and fishing effort should be regulated 
and not be increased, both in the WPO and EPO. 
 
Most of the capture-based tuna aquaculture (CBTA) facilities in Baja California use fresh, 
locally-caught Pacific sardine (Sardinops sagax caerulea) as feeds. Pacific sardines are 
oviparous, multiple-batch spawners that can reach a maximum size of 41 cm with a life 
span of 14 years. Fecundity is size and age dependent. Older fish spawn more times 
during a year, with spawning dependent on water temperatures. Most recent stock 
assessments show that the stock productivity of Pacific sardines (recruits, age-0 fish, per 
spawning biomass) is declining, with stock spawning biomass (age +1) leveling off at 
1.06 million metric tons (MT) in 2005. Studies suggest that the equilibrium of the 
spawning stock biomass and potential sustainable yield are dependent on 
environmental conditions. Recruitment success is variable in long, decadal, time scales, 
depending on oceanographic conditions. There are three stocks of Pacific sardines. The 
sardine fishery based in Ensenada is the northern stock of this species. This stock is also 
fished by the USA and Canada. Other solely Mexican sardine fisheries comprise the 
southern and Gulf of California stocks. The fishery in Ensenada has traditionally been 
based on catches of small Pacific sardines of the northern stock. There are a high 
proportion of juveniles in these catches, since Ensenada vessels operate close to the coast 
(less than 40 nautical miles). Studies suggest that older and larger sardines move 
offshore where little fishing effort is currently occurring. Traditionally, the Mexican 
catch has been used for reduction to fishmeal and oil, canned for human consumption, 
or used fresh for bait. Landings of Pacific sardines at Ensenada increased from an annual 
average of 2,133 MT during the 1980s, to an average of ~48,000 MT in the 1990s. 
Landings decreased to ~41,000 MT during 2003 and 2004 and rose to 57,000 MT in 2006. 
Management of the Pacific sardine fishery in Mexico incorporates several measures, 
including minimal sizes, closed seasons, and moratoriums on efforts. Fresh Pacific 
sardines have become important resources for CBTA in Mexico. In 2006, ~53% of the 
Pacific sardines landed in Ensenada were used for CBTA. However, this is likely an 
underestimate. Some catches were not recorded when they were delivered directly to 
the CBTA cages. Recently, a new Baja California State sardine fisheries committee that 
included fishing and frozen fish processing companies was reorganized to include 
CBTA in the management of the Mexican portion of the northern Pacific sardine stock.  
 
CBTA effects the marine environment and marine species associated with farm sites (sea 
mammals, marine birds, and marine organisms that inhabit the water column and 
benthos). Unconsumed or macerated sardines and fish feces are the main sources of 
solid, suspended, and soluble wastes. However, this waste stream is quite different from 
other, commercially fed finfish aquaculture such as salmon: tuna farming is seasonal; 
does not use antibiotics, chemicals, or any agricultural pesticides or additives; and it 
depends on natural feeds (sardines).  Soluble nutrients are commonly detected only in 
close proximity to the tuna cages and dissipate rapidly. However, changes in the benthic 
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community derived from enrichment of waste organic matter to the sediments could be 
more persistent, and even a 6 month fallow period may not be sufficient for the benthic 
community to recover. The extent of the increase in benthic enrichment is still to be 
determined since accumulations of tuna farming wastes are strongly dependent on the 
hydrodynamics and oceanographic characteristics of the farm site, and farm 
management practices, and no such studies have been done. Non-lethal methods of 
controlling marine mammals, such as placing high nets and electrified wires around the 
cages have effectively discouraged sea lions. The non-lethal use of whips and sounds to 
reduce bird predation on sardines are additional, successful measures that ranchers have 
implemented to avoid conflicts with protected species. CBTA has a number of 
environmental, social and economic impacts which can be considered as positive or 
negative, as judged by society. CBTA is a new economic activity within the fisheries 
sector of Baja California, México which has brought new jobs. CBTA is closely 
monitored by the federal authorities, and the management is carried by the proper 
government agencies. A new Mexican law on sustainable fisheries and aquaculture 
addresses CBTA. All CBTA farms in Mexico are required by law to monitor marine 
water quality and sediments; monitoring programs must be verified by both the 
Mexican Navy and the Ministry of the Environment. To date, neither agency has 
declared any negative environmental action on any of the tuna farms. Governance of 
tuna ranching in Mexico is still underdeveloped; several issues need to be addressed in 
order to assure a minimum impact on the environment, especially in regards to better 
scientific determinations of the carrying capacity of each site, and development of better 
technological and management alternatives to reduce the impact of fish wastes on the 
benthos. 
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Chapter 1 
 

Capture-Based Tuna Aquaculture (CBTA) in the Ensenada Region 
of Baja California, Mexico 

Introduction 
 
Tuna is one of the most important seafood commodities in the world with global 
production of ~3.5 million metric tons (MMT)/year, accounting for ~5% of the total 
fisheries for human consumption (FAO 2007). One third of the landed tuna is sold as 
fresh, chilled, or frozen fish and is exported to the major tuna markets of Japan, the 
United States, and the European Union (Paquotte 2003). The nations with largest tuna 
catches are Japan (33%), United States (13%), Taiwan, and South Korea. Other countries 
that fish tuna are Russia, Philippines, Ghana, France, Holland, Spain, Canada, Ecuador, 
Venezuela, Costa Rica, and México. 
 
The US fleet began tuna fisheries in the eastern Pacific in 1906 and expanded to Baja 
California, Mexico, with the focus on the capture of yellowfin tuna and skipjack 
(“barrilete”). In the early 1900s white–fleshed tuna began to be marketed as an 
alternative to chicken, and international markets expanded rapidly. San Diego, 
California, USA and Ensenada, Baja California, Mexico soon became the major Pacific 
center for tuna fishing and canning to supply the new international markets. 
 
In 1950, the first company devoted to the capture and processing of tuna was established 
in Ensenada. The Mexican fleet grew slowly until the 1980’s when it became the most 
important fleet in the eastern Pacific Ocean (EPO), and Ensenada became the “tuna 
capital of Mexico” (Dreyfus et al. 2002). Due to the large bycatch of dolphins by Mexican 
tuna purse seiners, the USA placed an embargo on Mexican tuna, first in 1980, and 
second in 1990. As a result, thousands of Ensenada tuna fishermen lost their jobs, and 
Mexico lost more than US$ 44 million annually from the export of about 30,000 metric 
tons (MT) of tuna (Buenrostro 1999). With the loss of its US export markets, the Mexican 
government first developed European export markets and then launched a very 
successful campaign to increase domestic tuna consumption. The Mexican tuna fleet 
relocated to the Mazatlan and Manzanillo ports in the southern Mexican Pacific, because 
these ports were closer to the main fishing areas and the new domestic markets that 
were created (Vaca-Rodriguez 2003). The USA embargo was lifted in 1997, but the 
damage had already been done to the tuna industry in the Ensenada region.   
 
Today, the Pacific coast of Mexico supports large yellowfin tuna and skipjack fisheries, 
and tuna fisheries have the highest economic value after shrimp. Traditionally, tuna 
fishing has focused on yellowfin tuna, bonito, and skipjack tuna for the canning 
industry. Bluefin tuna has been considered incidental catch. Yellowfin tuna have 
provided a critically needed protein for the Mexican canned tuna market. In the late 
1990’s increased market demands in Japan for high quality northern bluefin tuna and 
the advent of new capture-based tuna aquaculture (CBTA) in the Mediterranean and 
Australia led to the first experiments with CBTA along the Pacific Coast of Baja 
California, Mexico. 
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In the Pacific Ocean, especially the Western and Central Pacific regions, there is great 
concern over the status of yellowfin and bigeye tuna stocks which are considered to be 
“vastly overfished” with failed management regimes (Petersen 2006) and substantial 
losses in potential economic returns (Kompas and Che 2006). In addition, there are 
concerns about the status of northern bluefin tuna stocks which are poorly known and, 
since 1996 are being targeted for the development of CBTA in Baja California, Mexico. 
 
Unlike closed systems’ aquaculture, where organisms are bred from captive broodstock, 
fed formulated feeds (or nutrients) and reared in captivity (Costa-Pierce 2003), Mexican 
tuna operations use wild caught fish for stocks and feeds. FAO has termed this practice 
“capture-based aquaculture” (Ottolenghi et al. 2004). 
 
CBTA is among the fastest growing forms of aquaculture in the world (FAO 2007). It is 
estimated that in the future 80% of tuna will come from aquaculture (Doumenge 2001). 
Northern Baja California in Mexico is well suited to CBTA due to its temperate weather 
conditions, proximity to the Los Angeles international airport in the USA, lack of 
hurricanes, an abundant supply of locally caught sardine feeds, favorable regulations, 
and low labor costs (Sylvia et al. 2002). 
 
CBTA was started in Mexico in 1996 by Atunera Nair near Cedros Island south of 
Ensenada. This company produced 64 MT of ranched tuna over its 3 years of operation 
with marginal success. Adverse weather conditions such as El Niño events and 
Hurricane Nora and a general lack of experience with the operations led to high 
mortalities.  
 
However, development of many innovative techniques by leading Mexican CBTA 
operations in recent years and moving operations further north to reduce the risk of 
hurricanes, has allowed some companies to emerge as significant international 
competitors in a relatively young, but growing industry. Most notable among these 
innovators is Mr. Philippe Charat, who left shrimp fishing on Mexico's Gulf Coast and 
began fishing tuna out of Ensenada in 1983. In 1997 Mr. Charat established Maricultura 
del Norte in the Ensenada region. Today, Maricultura del Norte is Mexico’s largest and 
most successful tuna farm (Anonymous 2005a).  

In 2008, there are 10 government authorized concessions and one permit for CBTA for 
bluefin tuna in the vicinity of Ensenada (Figure 1), but only 9 are in operation (Table 1). 
Mexican law defines a difference between “permits” and “concessions”. Permits are 
short-term (up to five years) and can be renewed. Concessions are long-term (up to 20 
years for a fishery, and up to 50 years for an aquaculture operation). In 2006, the CBTA 
farms exported 4,350 MT of tuna at an average price of US$ 17,000/MT, producing an 
estimated US$ 74 million (Table 2). The commercial value in 2005 was US$ 80 million, 
about US$ 21 million more than in 2004 due to better market prices (Bancomext 2005).  

 
Operational Management  
 
CBTA is a fishing activity where added value is obtained by fattening captured juvenile 
tuna with wild-caught Pacific sardines. From a technical/operational point of view, 
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CBTA can be broken into the following operational phases: 1) capture and 
transportation, 2) feeding/fattening, 3) harvesting and, 4) sale. 
 
Capture and transportation 
 
CBTA operations in northern Baja California, Mexico rely exclusively on wild Northern 
Pacific bluefin tunas (Thunnus orientalis) (NBT) for stocking. Nearly all of the NBT for the 
CBTA are captured by purse seiners in the EPO from the Pacific coast of Mexico between 
23°N and 33°N, and within 100 nautical miles of the coast.  
 
Purse seiners typically catch seasonally from June to September, depending on when 
and how long the fish reside off the coast of Ensenada. Purse seiners will travel 30-50 km 
offshore to find schools of tuna. The largest schools targeted for capture are typically 
two year old, 15-45 kg tuna (Sylvia 2007). 
 
Once a tuna school is located, the boat is positioned on the side of the school while the 
net is released. The net is then pulled by the “pangon” (fast boat) at one end and by the 
tuna boat at the other to enclose the school. Once enclosed, the net is kept open until the 
arrival of a towboat with a tow pen. This procedure is one of the most critical since if the 
net closes or collapses, the fish can be damaged.  

 
The towboat and tow pen travel at 3-4 knots with empty pens, depending on the type of 
tow pen being used. Once the boat is about a nautical mile from the catch, the “pangon” 
is launched towards the purse seine net. The towboat brings the tow pen towards the 
catching net to try to match the “door” of the tow pen to the “door” of the catching net. 
At that point towing rope from the tow pen is released from the towing boat and passed 
to the tuna boat, and the tow pen is tied to the purse seine net (Figure 2). 
 
Conveying of tuna to the tow pen is done by lifting the capturing net to the tow pen, a 
process that is carried out very slowly. Divers manually open gates in the nets and herd 
the fish into the tow pen. Tuna are forced to pass through a tunnel formed by the two 
doors connecting the net and the tow pen, and fish pass from the net to the tow pen. 
During this procedure, a diver remains on the side of the doors filming the movement of 
fish from net to pen to quantify the total capture. Simultaneously, two other divers 
remain swimming both around the tow pen and the purse seine net to free entangled 
fish and to observe the species and amount of associated bycatch that was captured with 
the tuna in the purse seine in order to have an accurate knowledge of the contents of the 
tow pen. 

 
Once all the tuna has been conveyed to the tow pen, its door is closed and the tow pen is 
released from the purse seine net. The towing boat then embarks on its trip to the CBTA 
farm (Figure 3). Towing may take days to weeks, depending on the distance between the 
capture zone and the farm. The tow boat travels at around 1 knot as far as 50 km to the 
CBTA farm. From this moment on the tuna are treated very carefully to reduce stress 
and increase their value, and several activities are conducted in route to better quantify 
the capture. 
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Some tuna are captured and sacrificed to record size and weight and, and using data as 
well from the video filmed during the conveying of the tuna, estimates of the numbers 
and biomass of the catch are made. Care and maintenance given to the tuna during 
transportation is very important to reduce mortalities. During towing, tuna are feed 
daily with unfrozen sardines stored previously in the towboat. The amount of food 
given in this period is small, no more than 100 kg/day. Feeding of the tuna during the 
trip is done mainly to begin to acclimatize and train the animals to captivity and 
formulated diets. Manager observations indicate that the tuna tend to “relax” and 
gradually start accepting sardines during the trip. Frequent visual inspections are done 
on the pen both at the surface and underwater by divers. During these inspections any 
damage to the net is repaired, and entrapped or dead animals are removed. Captured 
sharks are also removed or killed to protect the tuna as well as the divers that work on 
the maintenance of the pen during transportation.  
 
Upon arrival at the farm, two kinds of maneuvers take place: (1) anchoring of the tow 
pen; and (2) conveying of tuna from the anchored tow pen to the established fattening 
pen (Figure 4).  
 
Grow-out cages are circular with a 30-40 m diameter of pontoon floats and 60-90 mm 
mesh nets that are 12-20 m in depth and set no less than 5 m from the bottom. Cages are 
stocked with 1,500-2,000 fish/cage (May 2002). In some cases, an outer 150-200 mm 
mesh predator net is placed around the inner net. The predator net acts as a barrier to 
keep sea lions, sharks, and other predators from eating and stressing the tuna. A 
freeboard net is used to prevent the tuna from jumping out of the cage. Many cages also 
have a handrail 1 m above the circumference of the cage making working around them 
easier. Each net must also have screw anchors placed into the sediment to hold the cage 
in place. All together each cage costs ~US$ 80,000-100,000. 
 
Feeding/fattening 
 
CBTA in northern Baja California use Pacific sardines (Chapter 3) or mackerel, fresh or 
frozen, and occasionally squid, to feed the captured NBT. These species are preferred 
because they are part of NBT’s natural diet and have a high lipid content. To obtain 
sardines, CBTA ranches in Baja California have either their own sardine boats, buy from 
sardine companies, or hire sardine boats to capture feed fish. 
 
Pacific sardines occur in the waters off of Ensenada and are heavily fed on by migrating 
tuna (see Chapter 3; Baumgartner 2000). Baja California Mexico CBTA farms have the 
ability to feed their NBT fresh sardines and other clupeids from wild populations that 
occur naturally in large populations off the coast of Mexico.  
 
Fresh food is the optimal food for NBT fatting because of its acceptance by the NBT as 
well as its quality. The availability of fresh sardines depends upon their presence at a 
relatively short distance from the CBTA farms. Sardines and mackerel have very limited 
storage times and degradation is rapid due to their high lipid contents. 
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By feeding the NBT fresh, oily sardines, and without the NBT swimming for miles 
chasing its food, the captured NBT meat becomes an oily, rosy red color, marbled with 
fat, increasing its quality and making it very valuable. The feeding of NBT varies during 
different periods of fattening. There are three phases: acclimation, initial feeding, and 
fattening. 
 
Acclimation Phase: Recently captured NBT have to pass through an acclimation phase 
during which feeding and ingestion is low. This period lasts from transportation after 
capture to 3-4 weeks at the CBTA farm. During this acclimation period, sardines are 
placed in the cage to induce feeding.  
 
Initial Feeding: At the beginning of this next stage, NBT are fed three times a day, with 
workers trying not to provide extra food to avoid its accumulation and decomposition at 
the bottom of the cage, and thus ripping of the net by other animals feeding through the 
net, leading to excessive operational costs. In order to verify the amount of food to be 
provided, visual observations are done at the surface and underwater. From the boat, 
workers observe when tuna stop eating and return to normal passive swimming around 
the pen. Underwater, divers observe tuna feeding below the surface as well as when the 
food reaches the end of the net uneaten. 
 
One day a week the fish are not fed so that damage isn’t done to their livers from 
overfeeding. Feeding techniques include: broadcast feeding where the sardines are 
manually shoveled into the cage; machine-feeding by conveyor belts that blow sardines 
out onto the surface of the cage; and feeding by a central pipe that introduces sardines 
into the water. 
 
Fattening Phase: Commonly cages have stocking densities of ~4 kg/m3 (Aquaculture SA 
2000) (range 2-5 kg/m3; Rojas and Wadsworth 2007) and contain ~1,500-2,000 fish/cage 
(May 2002). With water temperatures ranging from 14-17°C, feed conversion ratios 
(FCRs) are about 12:1 (Sylvia 2007). For T. orientalis, dry FCRs are reported to range from 
1.9 to 5.9, and wet FCRs from 7 to 20 (Table 3). 
 
Mortalities in the early stages of development of CBTA in Mexico were between 10-20% 
during transport (towing), and ~10-15% during feeding and fattening (Lozano-
Huguenin and Vaca-Rodriguez 2004). Presently, towing mortalities are between 1-3% 
and 6% during feeding and fattening (Anonymous 2005b). In South Australia, 
mortalities ranged between 3-3.25% for all of these stages (Fernandes et al. 2007). 
 
The time from capture to harvesting depends on biological conditions as well as 
economic factors and can vary from 4 to 9 months. In the NBT CBTA farms in Baja 
California, animals are kept until reaching an increase in biomass of 30-35%. As tuna 
acclimate to captivity, the amount of food is increased, from a few kilograms of sardines 
in the beginning, to an amount representing 8-15% of the biomass of NBT in the cage. 
The frequency of feeding is reduced from three to two times a day, but the amount stays 
the same. In other words, the NBT eat less frequently but higher amounts are fed at each 
meal, increasing their sizes and fat reserves. 
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Normal routine maintenance is practiced on the cages and the NBT within them. These 
activities are very similar to those practices performed during the transportation: visual 
inspections to repair the net or to change the anchoring ropes; underwater inspections to 
check the condition of the cage as well as the condition of the NBT; divers removing any 
dead animals and keeping records on mortalities; drift or attached seaweeds removed 
from the side of the nets to maintain a better water flow through the cage. This 
maintenance is done two or three times a day during the fattening period. 
 
Harvesting and Sale 
 
The final stage of CBTA in Mexico is harvesting and selling the product. Unlike the 
traditional tuna fishery for canning that must sell its catch once it reaches the dock, 
farmed NBT can be sold whenever the market is best to make the most profit. CBTA 
ranchers carefully watch the Japanese tuna market. Ninety-five percent of the Mexican 
CBTA goes to Japan, with half of that going to the Tsukiji fish market. The other 5% of 
the NBT goes to the west coast of the USA (Apple 2002). A small amount also stays in 
Mexico. 
 
Before harvesting, NBT are isolated into smaller groups to lower the risk of fish injuring 
each other and degrading the meat. A net is brought up below the fish, and divers grab 
individual NBT holding their tail and gills. The divers pass the fish to a barge where the 
fish is sacrificed with a spike through its head. NBT are bled by severing a main artery, 
and a fine steel wire is run down the fish’s spinal cord to paralyze it and prevent 
flopping around. The gills are cut out and the carcass is dropped into a 0°C saline water 
solution. The entire harvest and slaughtering process is done extremely fast to keep the 
NBT meat in the best condition. If the fish become too stressed, lactic acid will build up 
in their muscles and degrade the flavor. If fish are allowed to flop around they can 
“burn” the meat due to their rete mirabile circulatory system.  
 
Once fish are cleaned, weighed, tagged, measured and cold-packed, they are driven 
across the border to the Los Angeles International Airport and flown to Japan, arriving 
the next day. The Japanese refer to the tuna coming from Mexico as “laxfish” because 
they are flown out of Los Angeles (LAX) airport and are known to have high quality 
meat. 
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Table 1. CBTA Farms in Baja California, México1,2 
 
  

# Farms Locations Sources of Capital 
Investments 

1 Acuacultura de Baja 
California, S.A. de C.V. 

Salsipuedes Japan (Mitsubishi 
Corporation) 

2 Administradora Pesquera del 
Noroeste, S.A. de C.V. 

N.A. N.A. 

3 Baja Acuafarms, S.A. de C.V. Islas Coronados Iceland 
4 Bajamachi, S.A. de C.V. Isla Todos Santos Japan/US 
5 Duarcuícola, S.A. de C.V. Salsipuedes Japan (Explorer 

Corporation) 
6 Frescatún, S.A. de C.V. Bahia Soledad Japan 
7 Intermarketing de México, S.A. 

de C.V. 
Salsipuedes Japan (Explorer 

Corporation) 
8 Maricultura del Norte, S.A. de 

C.V. 
Puerto Escondido Mexican-USA  

9 Mexican Bluefin, S.A. de C.V. Salsipuedes Iceland 
10 Operadora Pesquera de 

Oriente, S.A. de C.V. 
Punta Banda Japan (Explorer 

Corporation) 
11 Rancho Marino Guadalupe, 

S.A. de C.V. 
Salsipuedes Iceland 

 

1N.A. = Not Available; Locations are in the coastal zone of Ensenada, except #3 which is 
located off the coast of Rosarito, Baja California.   
2There are two other concessions (Isla de Cedros and Tokaido) that are not in operation. 
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Table 2. Northern bluefin tuna production from CBTA in Baja California, Mexico1 
 

Years Production 
(MT) 

Total Value 
(million of US$) 

Estimated prices 
(US$/kg) 

1999 64  1 15.60 
2000 500 9 18.00 
2001 550  10 18.20 
2002 750  12 16.00 
2003 2,125 35 16.30 
2004 3,849 59 15.40 
2005 4,822 80  16.60 
2006 4,350 74 17.00 

1Sources: Bancomext, Consejeria Comercial in Japan, 2004 (period 1999-2004) and 
company Operadora de Oriente, S.A. de C.V. (period 2005-2006).  
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Table 3. Feed conversion rates in CBTA1 
 
 
 
 
Species 
 

Dry  
Basis 
FCR 

 

Wet 
Basis 
FCR 

 
Sizes 
 

Food Types 
 

Sources 
 

T. orientalis 1.9 7 45 kg S. sagax  Sylvia et al. (2003) 
T. orientalis 2.9-4.1 10-14 <=40 kg Mix Sm Pelagic  Ikeda (2003) 
T. orientalis 3-6    Smart et al. (2003) 
T. orientalis 4.1-5.9 14-20 >60 kg Mix Sm Pelagic Ikeda (2003) 
T. thynnus 3.8 13 50--300 kg Mix Sm Pelagic Peric, Z. (2003) 
T. thynnus 4.8 15.38 32 kg Mix Sm Pelagic Aguado et al. (2006)  
T. thynnus 7.8 24.87 219 kg Mix Sm Pelagic Aguado et al. (2006) 
T. thynnus 8.0 25.6 180 kg + Mix Sm Pelagic Aguado et al. (2005) 
T. maccoyii 2.7-4.9 10-17 17kg S. neopilchardus Fernandes et al. (2007) 
T. maccoyii 3.2-3.8 11-13  Mix Sm Pelagic Smart (1996) 

 
1Dry FCR was computed from reported wet FCRs. For Ikeda  (2003) and Smart (1996) a 
71% moisture composition for a mixed, small pelagic diet was used from a survey of 
literature including articles cited in the table and Bunce (2001), Fernandes et al. (2007) 
and Norita (2003). Besides species, individual size and food composition, water 
temperature is a contributing factor to FCR (Ikeda 2003; Smart et al. 2003; Graham and 
Dickson 2004). 
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Figure 1. Baja California Peninsula (A) and Ensenada region, with the approximate 
location of the CBTA ranches. The numbers represent the individual companies 

(Table 1).   
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Figure 2. Purse seiner that has captured bluefin tuna (net near the boat) transferring 
tuna to the tow pen (right), with three speed boats keeping the purse seine net from 

collapsing (Source: Courtesy of Maricultura del Norte). 
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 Figure 3. Tow net being brought to the grow-out (“fattening”) site (Source: ATRT 
Tuna-Ranching Intelligence Unit 2004). 
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Figure 4. Grow-out (“fattening”) pens anchored in the nearshore areas  

off Ensenada, Baja California, Mexico (Source: Authors) 
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Chapter 2 
 

Northern Pacific Bluefin Tuna: Biology, Population Dynamics and 
Fisheries (including CBTA) in Mexico 

 
Biology of the Northern Pacific Bluefin Tuna (Thunnus orientalis) 
 
Taxonomy 
 
Bluefin tuna occur as three species: Thunnus thynnus, Thunnus maccoyii, and Thunnus 
orientalis. The first one, Thunnus thynnus, is found in the Atlantic as well as in the 
Mediterranean and Black Seas (Mather and Jones 1972, Parrack 1979) and is occasionally 
referred to as a subspecies, Thunnus thynnus thynnus. The second one, Thunnus maccoyii, 
is found in the South Pacific (Froese and Pauly 2007). The third one, Thunnus orientalis, 
often referred to as a subspecies Thunnus thynnus orientalis, is found in the Northern 
Pacific. This report will refer to the species used for CBTA in Mexico as the Northern 
Pacific bluefin tuna (NBT) (Thunnus orientalis). 
 
Age and Growth 
 
Bayliff (1993a) reviewed different estimates of age and length, finding ranges of lengths 
for different ages (Table 1). Bayliff (1993b) used length-frequency data to obtain an 
estimate of 0.675 mm per day for the growth of NBT in the EPO. He found growth to be 
more rapid in the summer than in the winter. Maximum fork length is over 300 cm, but 
the common length is 200 cm (Collette and Nauen 1983), although some authors 
reviewed by Bayliff (1993a) give estimates of maximum length from 219 to 320.5 cm.  
 
Maturation and Spawning 
 
Onset of maturity is about 4-5 years (Collette and Nauen 1983, Bayliff 1993a, Itoh 2006). 
Lengths and weights of 5 year-old spawning fish are about 150 cm and 60 kg 
respectively (Harada 1980). Bluefin spawn fractionally; that is, they release eggs over 
several days. Given their tremendous mobility, they have the potential to broadcast eggs 
over several hundred square miles within a few days 
(www.tunalab.unh.edu/Bluefinlifehistory.htm). No information is available on the 
frequency of spawning. In the Pacific Ocean, spawning occurs near Japan and the 
Philippines in April, May, and June, off southern Honshu in July, and in the Sea of Japan 
in August (Yamanaka et al. 1963, Yabe et al, 1966, Okiyama 1974 and 1979, Nishikawa et 
al. 1985, Collette and Nauen 1983). In recent surveys, larvae have been discovered east of 
the Kuroshio Current, in the transitional fronts. Females weighing between 270-300 kg 
may produce as many as 10 million eggs per spawning season (Collette and Nauen 
1983). Although there were some reports of larvae of NBT near the Hawaiian Islands 
prior to 1979, no larvae were found in 460 plankton samples collected 1 to 15 nautical 
miles off Oahu during 1985 and 1986 (Bayliff 1993a). 
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Population Dynamics of the Northern Pacific Bluefin Tuna 
 
Recruitment 

 
Recruitment in recent decades has fluctuated. The 2001 year class appears to be strong. 
There is no evidence of recruitment failure in recent years (ISC 2006). NBT recruitment is 
said to vary between 10 to 30 million organisms per year (1952-2002 period), with a 
strong recruitment (41 million) in 2001 (http://isc.ac.affrc.go.jp/). 
 
Distribution and Migration Patterns 
 
The NBT is found in the EPO from the Gulf of Alaska to southern Baja California (Koski 
1967, Bayliff 1980). In the WPO, it occurs from the Sakhalin Islands, in the southern Sea 
of Okhotsk, south to the northern Philippines (Collette and Nauen 1983). NBT are 
usually oceanic, but seasonally come close to shore. Up to a size of 40-80 kg, they school 
by size, sometimes together with albacore, yellowfin, bigeye, skipjack, eastern Pacific 
bonito, and/or yellowtail amberjack, among others. NBT exhibit strong schooling 
behavior while they are young. While schooling is believed to be sight oriented, schools 
have been observed at night. Therefore, other senses (particularly the lateral line) appear 
to be involved in this behavior (IATTC 2005).  
 
NBT tolerate a wide range of temperatures. During their sojourn in the EPO, NBT are 
residents of the California Current, a region of upwelling off California and Baja 
California. NBT are found and caught most often in the EPO in waters with surface 
temperatures between 17° and 23°C (Bell 1963, Flittner 1966, Roden 1991). In the WPO 
most of the NBT inhabit the Kuroshio Current (Marr 1970, Stommel and Ishida 1972, 
Sugawara 1972, Takenouti 1980).  
 
It appears that spawning occurs only in the WPO, in the vicinity of Japan, and the 
survival of larvae is strongly influenced by the environment. After spawning, the fish 
probably disperse from the spawning areas to other areas of the WPO. Some may even 
migrate to the EPO, as large fish are found there. The following year, if they have not 
traveled too far, they presumably return to the spawning areas to spawn again (Bayliff et 
al. 1991). Larval, postlarval, and early juvenile NBT have been caught in the WPO, but 
not the EPO, so it is likely that there is a single stock of NBT in the Pacific Ocean (IATTC 
2006). 
 
There is extensive research on migration and movement of Atlantic bluefin tuna (Block 
et al. 1998, 2001a, 2001b; Boustany et al. 2001; Stokesbury et al. 2004; Block et al. 2005; Teo 
et al. 2007), and NBT in the NPO (Marcinek et al. 2001, Kitagawa et al. 2007) by a group of 
researches “focused on gathering scientific data that will provide information necessary 
to solve critical stock structure issues surrounding bluefin tuna” 
(http://www.tunaresearch.org/). Tagging studies, conducted with conventional and 
archival tags, have revealed a great deal of information about the life history of NBT. 
Some fish apparently remain their entire lives in the WPO, while others migrate to the 
EPO. Polovina (1996) put forward the hypothesis that migration of juvenile NBT into the 
EPO increased in years when the abundance of sardines off Japan was declining. 
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Matsukawa (2006) suggested that the migration from the WPO to the EPO occurs as an 
evolutionary response to population excess. 
 
NBT migrate over 11,000 km to the EPO, eventually returning to their birth waters to 
spawn. The journey from the WPO to the EPO takes as little as 7 months, or perhaps 
even less. A young NBT took two months to traverse the whole Pacific Ocean, which 
was much shorter than expected from previous records (Itoh et al. 2003). Tuna 
migrations begin mostly, or perhaps entirely, during their first and second year of life. 
Conditions in the WPO influence the numbers of juvenile fish that move to the EPO, and 
also the timing of these movements. Likewise, conditions in the EPO probably influence 
the timing of the return of juvenile fish to the WPO (IATTC 2006). In the EPO, the NBT 
tend to migrate northward along the coast of Baja California, Mexico and southern 
California, USA from May to October. 
  
Domeier et al. (2005) analyzed the data recovered from 11 pop-up archival tags and 3 
surgically implanted archival tags to juvenile NBT. Fish spent winter and spring off 
central Baja California, and summer through fall was spent moving as far northward as 
Oregon, with a return to Baja California in the winter months. The migration south to 
north in the EPO is related to migrations and/or local abundance of their prey 
(Yamanaka et al. 1963; Lozano-Huguenin and Vaca-Rodríguez 2004b; Kitagawa  et al. 
2007). Fish of ages 2-3 migrate back to Japan. Off the Pacific coast of Japan they migrate 
northward in summer and southward during winter. Large fish enter the Sea of Japan 
from the south in early summer and move as far north as the Okhotsk Sea; most leave 
the Sea of Japan through Tsugara Strait, north of Honshu (Collette and Nauen 1983).  
 
General patterns of migrations, but not the precise routes, are shown in Figure 1. For 
example, it appears that the route of migration of juveniles bound for the EPO is south 
of the route of migration of maturing fish bound in the opposite direction, but such is 
not necessarily the case (Bayliff 1980). A map showing a specific route of migration of a 
young NBT is given by Itoh et al. (2003). 
 
The fish which migrate from the WPO to the EPO form the basis for the fishery in the 
EPO, which takes place principally during May through October. In Figure 1 it appears 
that the fish in the EPO have an increasingly restricted north-south distribution as they 
grow older. Fish less than ~100 cm in length, which make up the bulk of the EPO catch, 
may or may not leave the EPO each fall or winter. NBT of that size are seldom caught in 
the EPO during November-April, which might indicate that they have left that region. If 
so, they probably do not go all the way to the WPO. Also, the energy costs of making 
such a long migration are so great that it would probably not be feasible for a fish to 
make two such migrations each year for several years (Bayliff 1980), although it may be 
possible (Figure 2). 
 
After a sojourn in the EPO, which may or may not be interrupted by visits to the central 
or WPO, the survivors return to the WPO, where they eventually spawn. Nakano and 
Bayliff (1992) show catches of NBT by longlines between 25°N and 35°N and 120°W and 
150°W during the first and fourth quarters of the 1981–1987 period. These were most 
likely migrating from the EPO to the WPO, but they might have been arriving in the 
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EPO after a trip from the WPO. The population of age-2 fish is greater in the EPO and 
that of age-3 fish is greater in the WPO (Bayliff 1994; IATTC 2006), confirming the 
migration back to the WPO between ages 2 and 3.  

 
The distributions of the catches in the EPO by months are described by Calkins (1982), 
Hanan (1983), Vaca-Rodriguez and Compeán (2001), Pérez (2004, 2006), Pérez and 
Hernández-González, (2006), Fleischer, et al. (2006), IATTC (2006) and Dreyfus et al. 
(2007). During January through April there are typically only light and sporadic catches. 
Most of these are off the coast of Baja California between 24°N and 26°N and in the 
vicinity of Isla Guadalupe. In May and June the catches increase, and most of them are 
between 24°N and 27°N. During July the fishing area spreads to the north and is at its 
widest extent of the year; most of the catch is made between 25°N and 33°N. In August 
there are usually only light catches at the southern end of the fishing area, most of the 
catch being between 28°N and 33°N. During September most of the catch is made in the 
same area as in August, but the amount of catch is usually considerably less. In October 
the catches continue to decline, and most of them are north of 30°N. During November 
and December, as in the first months of the year, the catches are light and sporadic.  
 
Impacts of Oceanic Conditions 
 
The survival of larval and early juvenile NBT is undoubtedly strongly influenced by the 
environment (IATTC 2006). Age-0 fish about 15 to 60 cm in length are caught in the 
vicinity of Japan during the second half of the year (Yabe et al. 1966; Yukinawa and 
Yabuta 1967). The Kuroshio Current plays an important role in transporting larvae and 
postlarvae northward from the spawning grounds between Japan and the Philippines, 
and southeast of Japan to waters off Japan. NBT are found most often in the WPO in 
waters with surface temperatures between 14° and 19°C (Uda 1957; Kida 1936). Kida 
(1936) states that the temperature ranges increase with increasing size. NBT are much 
more plentiful off Japan in years when the sea surface temperatures are above normal 
than when they are below normal (Uda 1962, 1973).  
 
Tuna abundances, distributions, and migrations have been shown to be sensitive to 
environmental variability. In particular, the El Niño Southern Oscillation (ENSO) 
appears to have important consequences for spatial distributions and migrations of the 
tuna populations. For skipjack and yellowfin tuna (tropical water tunas) in the EPO, a 
strong recruitment is usually related to a powerful El Niño event. La Niña negatively 
affects their recruitment. This pattern seems to be reversed for tunas like albacore, found 
in temperate waters, similar to the NBT. Scenarios of climate change due to greenhouse 
warming used in several coupled atmosphere-ocean simulations have suggested that the 
changes in the mean state of the tropical Pacific Ocean would result in climate 
conditions similar to present-day El Niño conditions with an increased interannual 
variability (www.spc.int/OceanFish/Html/Globec/index.asp).  
 
The Mexican NBT tuna catches have been, in general, higher during La Niña events, and 
lower during El Niño events (Moreno-Alva and Vaca-Rodríguez 2003; Pérez 2006). NBT 
in the EPO are distributed further to the north in years when the sea surface 
temperatures are above normal (warm phase of the ENSO), and further to the south in 
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years when those temperatures are below normal (cold phase of ENSO) (Hester 1961). 
NBT has been caught as far north as the Shelikoff Strait, Alaska. These occurrences far to 
the north of the usual range of this species have been attributed to greater than normal 
sea surface temperatures (Radovich 1961). During the warm phase of the ENSO, sea 
surface temperatures in the EPO increase. This warm water wave may reach all the way 
to the USA-Mexico border. Based on these findings, we can also envision large impacts 
related to changes associated with global warming, limiting the amount of NBT 
available off Baja California.  
 
Low-frequency variability, such as Pacific decadal oscillation, affects the catch of small 
pelagic fish (anchovies and sardines), but similar effects soon emerge for larger fish such 
as salmon, various groundfish species, and some tuna species (Allain et al. 2006). 
Scientists working in the International Scientific Committee (ISC) are working with 
decadal oscillations and other environmental factors to try to model NBT recruitment 
and population dynamics. 
 
Interactions with Other Species 
 
Yamanaka et al. (1963) reported that the route of the northward migration of NBT 
coincides with that of the migration of Pacific sardines. When sardine populations 
suddenly decreased, the fishing of NBT declines. Uda (1973) reported that: (i) the 
resources of both this species and of sardines were large from 1933 to 1940, but from 
1941 on, decreased; (ii) with the decrease in food resources, fish in the northern part of 
the range moved south. Catches of sardines in Japan increased greatly during the 1976–
1985 period (Yamanaka et al. 1988); catches of NBT in the western Pacific increased from 
1976 to 1981, but then decreased from 1981 to 1985. 
 
Variations in the food spectrum of NBT are attributed to behavioral differences in 
feeding. Vigorous pursuit would be required to prey on small schooling fishes 
(anchovies, sauries, hake) or on squids, while modified filter-feeding is used to feed on 
red crabs and other less agile organisms (Collette and Nauen 1983). Their major 
competitors for food are marine mammals and other large fish, notably other scombrids 
and billfishes (Bell 1963, Yamanaka et al. 1963, 
http://www.flmnh.ufl.edu/fish/Gallery/Descript/BluefinTuna/BluefinTuna.html).  
 
Yamanaka et al. (1963) summarized the available information on the feeding and food of 
NBT in the WPO. Fish 20 to 65 cm in length consume anchovies and other fish, plus 
crustaceans and squid, while longline-caught (larger) fish eat fish and squid. They 
consume both pelagic and demersal fish, of many different species (Doi 1960; Yokota et 
al. 1961), including other tunas (Mori 1972). 
 
In turn, NBT are preyed upon by killer whales, pilot whales and other marine mammals. 
However, the rather large size of adults drastically reduces the number of potential 
predator species. Other predators include sharks, other large predatory fishes, and 
seabirds 
(http://www.flmnh.ufl.edu/fish/Gallery/Descript/BluefinTuna/BluefinTuna.html). 
 



26 
 

Fisheries for the Northern Pacific Bluefin Tuna 
 
Information on the fisheries which exploit NBT in the WPO is given by Yamanaka (1958 
and 1982), Yamanaka et al. (1963), Tatsuki et al. (1963), Yukinawa and Yabuta (1967), 
Shingu et al. (1974), Honma and Suzuki (1978), and Bayliff (1980).  
 
Fishing Gears 
 
All the NBT caught and taken to the CBTA locations come from purse seiners (Figure 3). 
A purse seine is made of a long wall of netting framed with floatline and leadline having 
purse rings hanging from the lower edge of the gear, through which runs a purse line 
made from steel wire or rope which allow the pursing of the net. It is the most efficient 
gear for catching large and small pelagic species that shoal 
(http://www.fao.org/fishery/geartype/249). 
 
The major part of a purse seine operation is searching for fish aggregations, then 
checking (when possible) the fish species, evaluating school sizes and their catchabilities 
prior to surrounding them. The purse seine is set around a detected school of fish. After 
that, the net is closed underneath the school by hauling the purse line running through 
the rings (pursing). To locate NBT schools, natural signs of fish aggregations (often 
observed with binoculars and/or helicopters or planes) are used, like concentrations of 
sea birds or ruffling of the water surface 
(www.fao.org/figis/servlet/static?dom=root&xml=tech/gears_search.xml). These are 
called free-swimming or school-sets (IATTC 2006). When targeting yellowfin tuna, the 
purse seines are ± 190 to 200 m deep, but purse seiners targeting NBT for CBTA use nets 
240-260 m deep and 1600-2200 m long.  
 
Fishing Catch and Effort for NBT 
 
NBT was an incidental catch in Mexico before the CBTA started (prior to 1996), but was 
classified as “tuna” to be canned, since there was no direct market for it (Lozano-
Huguenin and Vaca-Rodríguez 2004a; Fleischer et al. 2006; Dreyfus et al. 2007). Today, 
NBT catches represent a very small (but very valuable) proportion of the total tuna catch 
(including mainly yellowfin tuna and skipjack tuna) by the Mexican tuna fleet (Fleischer 
et al. 2006, Dreyfus et al. 2007). 
 
Japan currently accounts for ~64% of the NBT catch (all ages, including ages 0,1), 
virtually all of which is taken in the WPO. The only other nations involved in tuna 
fisheries to a significant degree are Taiwan and Mexico, which account for 20% and 15%, 
respectively, of the total catch. The Taiwanese catch comes from the west central Pacific 
(primarily) and northwest Pacific (secondarily). The Mexican catch comes entirely from 
the EPO (www.soest.hawaii.edu/oceanography/courses_html/OCN331/CHAPTER8.doc). 
 
The high-seas longline fisheries are directed mainly at tropical tunas, albacore, and 
billfishes, but small amounts of NBT are caught by these fisheries. Small amounts of 
NBT are also caught by Japanese pole-and-line vessels on the high seas (IATTC 2006). 
The first-year migrants are exposed to the summer and fall troll fisheries for NBT and 
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other species off Japan before beginning their journey to the EPO in the fall or winter. 
The second-year migrants are also exposed to the winter troll fishery and other fisheries 
which take place in the vicinity of Japan before beginning their journey to the EPO in the 
spring, summer or fall. The migrants, after crossing the ocean, are fished by purse 
seiners off California and Baja California. Eventually, the survivors return to the WPO 
(Bayliff 1991). Large fish are occasionally caught in the EPO, especially in the vicinity of 
Guadalupe Island, Mexico, and the Channel Islands, off Southern California (Calkins 
1982; Foreman and Ishizuka 1990; Bayliff 1993c). 
 
Catch records of NBT for the WPO and central Pacific have historically been less 
complete and accurate than those for the EPO (Bayliff 1991). This is partly due to the 
take of small, immature tunas of several species, which are caught in large numbers by 
small local fisheries and marketed as "meji " in Japan. Meji can refer to small tuna of 
several species, and there are no exact records of which species are taken. Apparently, 
there are recent efforts in Japan to impose NBT quotas in its own waters to prevent 
extinction (http://www.atuned.biz/public/ViewArticle.asp?ID=4329). There are no limits 
on the catches of NBT, but the scientific staff of the Inter-American Tropical Tuna 
Commission (IATTC) has advised that if small NBT were not harvested, the total catch 
of that species could be increased (www.fao.org/docrep/006/y4849e/y4849e08.htm).  
 
Catches of NBT have almost always been higher (2-3 times) in the WPO than in the EPO 
(Table 2). Most of the catch is obtained with purse-seiners (Tables 2 and 3). The catch in 
the EPO is variable (Figure 4, Figure 5, Table 2), due to migration and availability, as 
well as to a lack of targeting and variable fishing effort. However, prior to that, for many 
years catches reached over 10,000 MT (Bayliff 1993a). Ninety percent of the catch is 
estimated to be between 10 to 30 kg, representing mostly ages 1, 2 and 3 (Figure 6) 
(Bayliff 2001; IATTC 2006). Due to the migration pattern of the NBT, mean sizes vary 
from year to year.  
 
However, since 1996, targeted catches of NBT in the EPO by the Mexican fleet have 
increased due to CBTA (Fleischer et al. 2006; Dreyfus et al. 2007). Catches in 1996 and 
2004 (Fleischer et al. 2006), and 2006 (Dreyfus et al. 2007, 
http://www.iattc.org/CatchReportsSPN.htm) are historic for the Mexican fleet, but not 
for the EPO fleet (Table 2, Bayliff 1993a). The average NBT catch from 1995-2006 (by the 
Mexican fleet) was ~3,200 MT, and was limited mainly by oceanographic conditions in 
the NPO (Dreyfus et al. 2007).  
 
During 1990-2004 the annual retained catch of NBT from the EPO by purse-seine and 
pole-and-line vessels averaged 3,000 MT (range 400-9,000 MT). The retained catch of 
NBT in 2005 was 5,000 MT, 2,000 MT greater than the average for 1990-2004. Small 
amounts of NBT are discarded at sea by purse-seine vessels (Table 3, IATTC 2006). 
According to the IATTC (http://www.iattc.org/CatchReportsSPN.htm), in 2005 the 
NBT catch in the EPO was 4,545 MT, in 2006 9,786 MT, and preliminary catch estimate 
for 2007 was 4,009 MT.  
 
In the EPO, nearly all of the NBT purse-seine catch is taken west of Baja California and 
California, USA, within ~100 nautical miles of the coast, between about 23°N and 35°N, 
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from June to October (IATTC 2006; Lozano-Huguenin and Vaca-Rodríguez 2004a; 
Fleischer et al. 2006; Dreyfus et al 2007; 
(http://cripens.inp.gob.mx/atun/atunaletaazul.php), when the NBT migrates through 
the region. Because NBT is found in colder waters than yellowfin tuna, their main 
commercial fishing zones do not overlap (Vaca-Rodriguez and Compeán 2001). 
 
The catches of NBT in the EPO consist mostly of age-1 and 2 fish. The catches of age-2 
fish in the EPO exceed those of age-2 fish in the WPO in most years, whereas the 
opposite is the case for age-3 fish (Bayliff 1994). This probably indicates that the 
population of age-2 fish is greater in the EPO and that of age-3 fish greater in the WPO, 
although it is possible that area- and/or size-related differences in fishing effort and/or 
vulnerability to capture are responsible for the differences (IATTC 2006). In the EPO, 
NBT are caught mostly by Mexico and the USA (Table 4), between Cabo San Lucas, Baja 
California, Mexico and Point Conception, California, USA (Brock 1938; Oregon Fish 
Commission 1948; Neave 1959; Radovich 1961; Squire 1983; Oliphant et al. 1990; IATTC 
2006).  
 
Age-0 fish (~15-65 cm in fork length) are caught by trolling in Japan, and age-1 and older 
fish are caught by purse-seining. NBT of various sizes are also caught nearshore by 
traps, gillnets, and other gear, especially in the Sea of Japan (IATTC 2006). The 
Taiwanese small-scale longline fishery takes NBT over 180 cm in length when they 
aggregate for spawning. The Korean purse-seine fishery catches age-0 NBT fish with 
mean lengths ranging from 33.6 cm to 55 cm (IATTC 2006). 
 
Stock Assessment  
 
In fisheries, catches are not used as abundance indices, since many other factors are 
involved. In some fisheries, Catch per Unit of Efforts (CPUEs) can be good abundance 
indices (Hilborn and Walters 1992). However, for tunas, CPUEs are not good abundance 
indices due to the tuna schooling behavior and the communication among fishermen 
(Dreyfus-León and Gaertner 2006). 
 
Various indices of NBT abundance in the EPO have been calculated, but none of these is 
entirely satisfactory (IATTC 2005). A preliminary stock assessment carried out by the 
ISC has indicated that the spawning stock biomass had local peaks during the early 
1960s, late 1970s, and late 1990s, with a decline after the last peak. However, the relative 
strengths of these peaks are highly variable. The total catches of NBT have fluctuated 
considerably during the last 50 years. The presence of consecutive years of above 
average catches (mid-1950s to mid-1960s) and below-average catches (early 1980s to 
early 1990s) could be due to consecutive years of above-average and below-average 
recruitment. An index of abundance for the predominantly young NBT in the EPO has 
been calculated, based on standardization of catch per vessel day using a generalized 
linear model, which includes latitude, longitude, SST, SST2, month, and vessel 
identification number. The index is highly variable, but shows a peak in the early 1960s, 
very low levels for a period in the early 1980s, and some increase since that time (IATTC 
2006). 
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Recruitment was estimated to be highly variable, with 4 to 7 strong cohorts produced 
during the 1960-2003 period. A strong recruitment event may have occurred in 2001, 
which would maintain spawning stock biomass above recent levels until about 2010. 
The results of yield-per-recruit and cohort analyses indicate that greater catches could be 
obtained if the catches of age-0 and age-1 fish were reduced or eliminated. Spawner-
recruit analyses do not indicate that the recruitment of NBT could be increased by 
permitting more fish to spawn (IATTC 2006; Yamada et al. 2006). Even though fishing 
mortality (F) has been higher than FMAX (Yamada et al. 2006) or is above the reference 
point (Bayliff et al. 2005), recruitment overfishing has not occurred. Nevertheless, it is 
recommended that current fishing mortality not be further increased (Yamada et al. 
2006) and catches reduced (Bayliff et al. 2005). According to Maguire et al. (2006), the 
exploitation state of NBT is “Fully Exploited”. NBT is not included on the IUCN red list 
(Froese and Pauly 2007; http://www.iucnredlist.org/). There is no evidence that CBTA 
has affected the NBT stock since its beginnings in 1996. Considering that not all NBT 
migrate to the EPO and that increasing the catch would not necessarily decrease 
recruitment, current CBTA production levels do not appear to compromise the NBT 
stock. However, catches of NBT juveniles should be regulated and/or avoided, and 
fishing effort should not be increased, both at the WPO and EPO. 
 
The ISC (http://isc.ac.affrc.go.jp/isc7/ISC7_Plenary_Report-FINAL4.pdf) has 
scheduled workshops to complete a full stock assessment of the NBT, to be completed 
by May-June 2008. At the 7th plenary meeting of the ISC, it was concluded that the 
recommendation given at the 6th plenary meeting still holds, recommending that, noting 
the uncertainty of the current assessment, NBT fishery mortality not be increased above 
recent levels as a precautionary measure 
(http://isc.ac.affrc.go.jp/isc7/ISC7_Plenary_Report-FINAL4.pdf). 
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Table 1. Estimated lengths for each age of NBT from different authors, reviewed by 

Bayliff (1993a) 
 

Age Minimum estimate (cm) Maximum estimate (cm) 
1 43 76.4 
2 69 101.2 
3 90.65 125 
4 106.95 154 
5 128.5 178 
6 142 198 
7 176.1 215 
8 190.3 229 
9 203 241 

10 214.6 250 
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Table 2. Annual retained catches of Pacific bluefin tuna, by gear type and flag, in 
metric tons. Source: Western and Central Pacific Fisheries Commission, International 
Scientific Committee, Report of the Fourth ISC Pacific Bluefin Tuna Working Group 

(IATTC 2006). 
 

Western Pacific flags Eastern Pacific flags 
Total PBF JPN KOR TWN Sub-

total 
USA MEX Sub-

total PS LP LL Otr PS Otr PS LL PS Otr PS Otr 
1976 1,964 1,082 520 5,143    17 8,726 10,646 23 1,968  12,637 21,363 
1977 3,960 2,256 712 5,519    131 12,577 5,473 21 2,186  7,680 20,257 
1978 8,878 1,154 1,049 9,486    66 20,633 5,396 5 545  5,946 26,579 
1979 12,266 1,250 1,223 9,418    58 24,215 6,118 12 213  6,343 30,558 
1980 10,414 1,392 1,170 5,945    114 19,036 2,938 8 582  3,528 22,563 
1981 23,219 754 796 6,428    179 31,376 867 21 218  1,106 32,482 
1982 16,180 1,777 880 4,161 31  0 207 23,236 2,639 11 506  3,156 26,392 
1983 14,105 356 707 3,883 13  0 175 19,239 629 155 214  998 20,237 
1984 4,016 587 360 4,797 4  0 477 10,242 673 65 166  904 11,146 
1985 4,239 1,817 496 5,475 1  0 210 12,237 3,320 210 676  4,206 16,443 
1986 7,466 1,086 249 4,944 344  0 70 14,159 4,851 346 189  5,386 19,545 
1987 7,771 1,565 346 3,536 89  0 365 13,672 861 135 119  1,115 14,787 
1988 2,931 907 241 2,436 32  197 108 6,852 923 85 447 1 1,456 8,308 
1989 5,624 754 440 1,977 71  259 205 9,330 1,046 135 57  1,238 10,568 
1990 2,960 536 396 2,359 132  149 189 6,721 1,380 205 50  1,635 8,356 
1991 8,217 286 285 3,994 265   342 13,389 410 68 9  487 13,876 
1992 6,147 166 573 3,102 288  73 464 10,813 1,928 221   2,149 12,962 
1993 5,675 129 857 1,645 40  4 471 8,820 580 217   797 9,617 
1994 6,919 206 1,138 4,887 50   559 13,758 906 184 63 2 1,155 14,913 
1995 15,978 307 769 6,715 821  2 335 24,928 689 215 10 0 914 25,842 
1996 6,641 256 978 4,722 102   956 13,655 4,523 100 3,700  8,323 21,978 
1997 11,123 71 1,383 3,859 1,054   1,814 19,304 2,240 175 367  2,782 22,086 
1998 4,371 120 1,260 3,814 188   1,910 11,662 1,771 484 1  2,256 13,918 
1999 13,440 124 1,155 4,483 256   3,089 22,547 184 482 2,369 35 3,070 25,617 
2000 14,021 256 1,005 5,899 794  2 2,780 24,757 693 281 3,025 103 4,102 28,859 
2001 6,727 332 1,004 5,089 995 10 104 1,839 16,100 149 273 863  1,285 17,385 
2002 8,009 187 889 4,049 674 1 4 1,523 15,335 50 360 1,708 6 2,124 17,459 
2003 5,680 59 1,230 1,950 1,591 0 21 1,863 12,395 22 246 3,211 46 3,525 15,920 
2004 6,340 237 1,311 2,533 636 0 0 1,714 12,771 0 45 8,880 11 8,936 21,707 
2005 3,090 604 870 1,870 950 0 0 1,366 8,749 165 56 4,542  4,763 13,512 

PBF=Pacific bluefin tuna, PS=purse Seine, LP=pole and line, LL=longline, Otr=others, 
JPN=Japan, KOR=Republic of Korea, TWN=Chinese Taipei, USA=United Status of 
America, MEX=Mexico  
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Table 3. Estimated retained catches, by gear type, and estimated discards (purse-seine 

only), of Pacific bluefin tuna in metric tons, in the EPO, 1976-2005, Ret= retained, 
Dis=discarted, PS= purse seine, LP= Pole and line, LL= Longline, Otr= other (IATTC 

2006). 
 

 PS     
 Ret. Dis. LP LL Otr Total 

1976 10,621  22 13 3 10,659 
1977 5,449  10 11 34 5,504 
1978 5,389  4 9 8 5,410 
1979 6,102  5 6 19 6,132 
1980 2,909   0 31 2,940 
1981 1,085   4 9 1,098 
1982 3,145   7 12 3,164 
1983 835   2 34 871 
1984 840  0 3 65 908 
1985 3,996   1 111 4,108 
1986 5,040   1 66 5,107 
1987 980   3 54 1,037 
1988 1,380   2 49 1,431 
1989 1,102  5 4 124 1,235 
1990 1,430  61 12 90 1,593 
1991 420   5 94 519 
1992 1,928   21 116 2,065 
1993 579 0  11 329 919 
1994 969 0  12 121 1,102 
1995 629 0  25 264 918 
1996 8,223 0  19 80 8,322 
1997 2,608 3 2 14 256 2,883 
1998 1,772 0 0 94 504 2,370 
1999 2,553 54 5 152 552 3,316 
2000 3,712 0 61 46 374 4,193 
2001 891 3 1 148 389 1,432 
2002 1,709 6 3 71 358 2,147 
2003 3,233 0 3 88 751 4,075 
2004 8,880 19  16 63 8,978 
2005 4,743 14   100 4,857 
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Table 4. Estimates of the retained catches of Pacific bluefin tuna, by flag, gear type, 
and species, in metric tons, in the EPO, 2001, 2002, 2003, 2004 and 2005 (IATTC 2006). 

 
Pacific bluefin tuna 2001 2002 2003 2004 2005 
BLZ LL 131 67 42   
JPN LL 2 2 3 2  
KOR LL 10 1    
MEX LL  1 43 14  

LP  1 0 0  
PS 863 1,709 3,211 8,880 4,542 

 
 
 

USA 

GN 34 7 14 10 5 
LL 5     
LP 1 2 3 0  
PS 28 0 22 0  
RG 355 351 737 53 95 

OTR LL      
PS 0 0 0 0 201 

BLZ=Belize, CAN=Canada, CHL= Chile, CHN=China, COK= Cook Islands, 
COL=Colombia, CRI=Costa Rica, ECU=Ecuador, HND=Honduras, ESP=Spain, 
JPN=Japan, KOR=Republic of Korea, MEX=Mexico, NIC=Nicaragua, PAN=Panama, 
SLV=El Salvador, PER=Peru, PYF=French Polynesia, TWN=Chinese Taipei, 
USA=United Sates of America, VEN=Venezuela, VUT=Vanuatu, Otr=others, 
LL=longline, LTL=troll, NK= unknown, PS=purse seine, RG=recreational, GN=gillnet. 
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Figure 1. A model for northern bluefin migration in the Pacific Ocean  
(from Bayliff 1980). 
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Figure 2. Migration of a Northern Pacific bluefin tuna (from 
http://www.telegraph.co.uk/news/main.jhtml?xml=/news/2005/12/15/wtuna15.xml 
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Figure 3. Purse seine operations (http://www.fao.org/fishery/geartype/249). 
 

 
 
 
 



42 
 

 

TOTAL

0

2,000

4,000

6,000

8,000

10,000

12,000
19

75
19

76
19

77
19

78
19

79
19

80
19

81
19

82
19

83
19

84
19

85
19

86
19

87
19

88
19

89
19

90
19

91
19

92
19

93
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06

 
 

Figure 4. Eastern Pacific ocean bluefin tuna catch in MT (http://www.iattc.org/).  
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Figure 5. North Pacific bluefin tuna catch in MT (IATTC 2006).  
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Figure 6. Average sizes (weight) of Pacific bluefin caught by purse-seine and 
recreational gear in the EPO during 1995-2005 (Bayliff 2001, IATTC 2006) 
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Chapter 3 
 

Impacts of Capture-Based Tuna Aquaculture on Sardine Fisheries 
in Mexico 

 
Introduction 
 
Farming northern bluefin tuna (NBT) in the Ensenada region involves feeding 3,000 to 
5,000 MT of tuna and producing between 2,000 to ~3,000 MT of fish biomass per season, 
in the CBTA facilities of 11 companies (only 9 currently operating) (Chapter 1). During 
the 6 to 9 month growth-out period, the NBT are primarily fed fresh Pacific sardine 
(Sardinops sagax caerulea), amounting to between 20,000 to 30,000 MT. Feeding relies on 
sardine caught locally by the sardine purse seine fishery based in Ensenada, though 
some CBTA facilities have their own fishing boats. This chapter reviews available 
literature related with the Pacific sardine fishery in Mexico, focusing primarily on the 
Ensenada fishery. At the end of this chapter, future scenarios of the Pacific sardine 
fishery are discussed related to the CBTA. 
  
Pacific Sardine Biology 
 
Taxonomy 
 
Pacific sardines belong to the genus Sardinops found in eastern boundary currents of the 
Atlantic and Pacific Oceans and in western boundary currents of the Indo-Pacific 
Oceans. Parrish et al. (1989) indicated that sardines in the Alguhas, Benguela, California, 
Kuroshio, and Peru Currents, and off New Zealand and Australia are single species 
(Sardinops sagax), but stocks in the different areas of the globe may be different at the 
subspecies level (Bowen and Grant 1997; Grant et al. 1998). In the northeastern Pacific, 
the subspecies Sardinops sagax caerulea is distributed. However, Grant et al. (1998) 
suggested that this subspecies should be dominated Sardinops sagax sagax, with a 
distribution in all eastern Pacific. In recent assessments of the region (Hill et al. 2006), 
Pacific sardine is defined as Sardinops sagax, and we use that definition. 
 
Distribution and natural fluctuations 
 
Pacific sardines are frequently the dominant pelagic fish in the California Current. 
However, fishery independent data (Baumgartner et al. 1992) has shown that over the 
last several millennia their abundances have fluctuated greatly. Variability in the sardine 
populations, which can be sustained periods longer than a decade, are due to regime 
shifts in ocean conditions. Sizes of Pacific sardine populations alternate with the 
northern anchovy (Engraulis mordax) (Lluch-Belda et al. 1989; Baumgartner et al. 1992; 
Chavez et al. 2003) (Figure 1). During periods of high abundance and warmer ocean 
temperatures, Pacific sardines are found from the tip of the Baja California Peninsula to 
Alaska and throughout the Gulf of California (Hill et al. 2006). In the northern portion of 
their range, occurrences also seem to be seasonal (McFarlane and Beamish 2001). When 
sardine abundances are low, as during the 1960s and 1970s, Pacific sardines do not occur 
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in commercial quantities north of Point Conception, California, USA (Hill et al. 2006), 
but the northern anchovy population grows to a significant size. Abundances of Pacific 
sardines appear to be increasing from the low values in the mid 1970’s, and now sustain 
a large fishery in Baja California and California (Figure 2). 
 
Stock Structure 
 
Although an earlier electrophoretic study (Hedgecock et al. 1989) showed no genetic 
variation among sardines from the different stocks in the north eastern Pacific, it is now 
widely accepted that sardines of the northeast Pacific Ocean are of three subpopulations 
or stocks: a northern stock, from northern Baja California to southern Alaska, a southern 
stock off central Baja California, and a Gulf of California stock (Felix-Uraga et al. 2005) 
(Figure 3). There are Mexican fisheries on all three stocks (Figure 3; Table 1). Stock 
discrimination is based on tagging, size-at-age, isolated spawning centers, blood groups, 
vertebral column counts, estimated natural mortality rates, and bimodal seasons of 
recruitment (Smith 2005); also, temperature at capture analysis (Felix-Uraga et al. 2004) 
and otolith morphometry (Felix-Uraga et al. 2005) have been used. Pacific sardines 
probably migrated extensively during historical periods when abundances were high, 
moving north as far as British Columbia in the summer and returning to southern 
California and northern Baja California in the fall; movements that could explain the 
genetic results. Tagging studies (Clark and Janssen 1945) indicate that the older and 
larger fish move farther north. Migratory patterns were probably complex, and the 
timing and extent of movement were affected by oceanographic conditions (Hart 1973) 
and stock biomass. The 1950-70s were a period of reduced stock sizes and unfavorably 
cold sea surface temperatures which apparently caused the stock to shift south (Hart 
1973). 
 
Life History 
 
Pacific sardines spawn in loosely aggregated schools in the upper 50 meters of the water 
column (Hill et al. 2006). Sardines are oviparous, multiple-batch spawners with an 
annual fecundity that is indeterminate and highly age- or size-dependent (Macewicz et 
al. 1996). Butler et al. (1993) estimated that two-year-old sardines spawn on average six 
times per year whereas the oldest sardines spawn up to 40 times per year. Both eggs and 
larvae are found near the surface. Sardine eggs are spheroid, have a large perivitelline 
space, and require about three days to hatching at 15oC. Off California, sardine eggs are 
most abundant at sea surface temperatures of 13oC to15oC and larvae are most abundant 
at 13oC to 16oC. The spatial and seasonal distribution of spawning is influenced by 
temperature. During periods of warm water, the center of sardine spawning shifts 
northward and spawning extends over a longer period of time (Butler 1987; Ahlstrom 
1960). Recent spawning has been concentrated in the region offshore and north of Point 
Conception (Lo et al. 1996). Historically, spawning may also have been fairly regular off 
central California. Spawning was observed off Oregon (Bentley et al. 1996), and young 
fish were seen in waters off British Columbia in the early fishery (Ahlstrom 1960) and 
during recent years (Hargreaves et al. 1994). The main spawning area for the historical 
population off the U.S. was between Point Conception and San Diego, California, out to 
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about 100 miles offshore, with evidence of spawning as far as 250 miles offshore (Hart 
1973). 
 
Pacific sardines may reach 41 cm, but are seldom longer than 30 cm. They may live as 
long as 14 years, but individuals in historical and current California commercial catches 
are usually younger than 5 years. In contrast, the most common ages in the historical 
Canadian sardine fishery were 6-8 years. There is a good deal of regional variation in 
size-at-age, with size increasing from south to north, and from inshore to offshore 
(Phillips 1948; Hill et al. 2006). Size- and age-at-maturity may decline with a decrease in 
biomass, but latitude and temperature are likely also important (Hill et al. 2006). At low 
biomass levels, sardines appear to be fully mature at age one, whereas at high biomass 
levels only some of the two-year-olds are mature (MacCall 1979). 
 
Sardine Fisheries 
 
Landings 
 
The sardine fishery in Mexico began following the fall of the sardine fishery in 
California, USA during the 1940’s. Mexican catches have been used for reduction to 
fishmeal and oil, canned for human consumption, and used fresh for bait (Cisneros-
Mata et al. 1995).  The first recorded catches of Pacific sardines along the Mexican 
western coast were in Ensenada during 1951. Fishing extended southward arriving at 
Cedros Island in 1961 and Magdalena Bay in 1972 (Murphy 1966) (Figure 3). During the 
late 1960s Mexican Pacific sardine landings decreased, and fishmeal plants and 
canneries were built in Guaymas, in the Gulf of California, where sardine resources 
were abundant (Cisneros-Mata et al. 1995). 
 
Today the principal species in the fishery is the Pacific sardine; however, depending on 
the region (western coast of the Baja Peninsula or Gulf of California, Fig. 3), sardine 
fleets harvest other species. In Ensenada, recent landings include four species: Pacific 
sardines representing 80%, Pacific mackerel (Scomber japonicus) 11%, northern anchovy 
(Engraulis mordax) 8%, and jack mackerel (Trachurus symmetricus) 1% (Nevárez et al. 
2006). Because of this mix of species, the official fisheries management term for the 
Mexican fishery is “Small Pelagic Fisheries”. Using this definition, historical records are 
confused and include different species in their reports, especially at the beginning of the 
fishery. In this report, we will concentrate on the period of 1983 to 2005 when separation 
between species is clear. 
 
Landings of Pacific sardines at Ensenada increased from an annual average of 2,133 MT 
during the 1980s, to an average of nearly 48,000 MT in the 1990s, then diminished to a 
level around 41,000 MT during 2003 and 2004 (Table 2; Hill et al. 2006). In Table 2, 
landings for 2000 to 2004 incorporate estimates of sardines delivered directly to the 
CBTA farms off Northern Baja California. Sardine catches are thus 37% higher than 
reported in the official statistics, for example as reported by Nevárez et al. (2006). For 
2006, Cota and Troncoso (2007) reported that 61,109 MT of small pelagics were landed at 
Ensenada, where 93% (57,070 MT) was Pacific sardines, 1% chub mackerel, and 3% 
northern anchovy; however, these authors did not specify, in the case of sardines, if they 



48 
 

made adjustments to consider the unreported additional catch delivered directly to 
CBTA farms.  
 
The sardine fishery in Ensenada has traditionally been based on catches of small Pacific 
sardines with a high proportion of juveniles, as sardine boats operate close to the coast 
(less than 40 nautical miles). Studies suggest that older and larger fish might move 
offshore where little fishing effort occurs. Development of a new, offshore, trawl fishery 
that could relieve fishing pressure on juveniles near the coast has been discussed 
(Baumgartner et al. 2006). 
 
In Baja California state, most of the sardine catches are landed in Ensenada; other ports 
are the Isla de Cedros on the Pacific side, and San Felipe on the Gulf of California side, 
but the information on sardine landings from both of these ports is irregular. The state of 
Sonora is the most important producer of sardines in Mexico; this fishery is based on the 
Gulf of California sardine stock. Based on official government statistics, during the 10 
year period from 1995 to 2005, the state of Sonora was the most important sardine 
producer in the country followed by the state of Baja California (Table 1). 
 
Fishing Efforts 
 
The small pelagic fishery operates with purse seine vessels between 10-30 m long. These 
vessels have a storage capacity of 20 to more than 100 MT (a few have 300 MT capacity) 
(Nevárez et al. 2006). During the 1970s up to 60 vessels operated out of Ensenada, when 
the anchovy fishery was at its maximum. In 2003, 28 sardine fisheries vessels were 
permitted in Baja California (Anónimo 2006), but not all were operational. In recent 
years, the operational fleet size has fluctuated from 7 to 19 boats (Nevárez et al. 2006). In 
2006, Cota and Troncoso (2007) reported that only 9 fishing vessels operated in waters 
off Ensenada. This low number of fishing vessels in operation suggests that only 25% of 
the vessel holding capacity from Ensenada has been in use in recent years (Nevárez et al. 
2006). During 2005 a mean catch of 2,760 MT/vessel/year was estimated, ranging from 
200-7,000 MT/vessel/year. This high variation is due to the poor condition of most 
fishing vessels (76% are in poor condition); most of the vessels based in Ensenada are 25-
30 years old (SPPMBC 2006). 
 
Population Dynamics  
 
Estimates of the abundances of sardines from 1780 through 1970 have been derived from 
the deposition of fish scales in sediment cores from the Santa Barbara basin off southern 
California (Baumgartner et al. 1992; Hill et al. 2006) (Figure 1). Significant sardine 
populations existed throughout the period with biomass levels varying widely. Both 
sardine and anchovy populations tend to vary over periods of roughly 60 years, 
although sardines have varied more than anchovies. Sardine population declines were 
characterized as lasting an average of 36 years; recoveries lasted an average of 30 years. 
Biomass estimates of the sardine population inferred from scale-deposition rates in the 
19th and 20th centuries (Smith 1978) indicate that the biomass peaked in 1925 at about 6 
million MT. Sardines aged three and older were fully recruited to the historical fishery 
until 1953 (MacCall 1979). Recent California fisheries data indicate that sardines begin to 
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recruit at age zero and are fully recruited to the southern California fishery by age two. 
Age-dependent availability to the fishery likely depends upon the location of the fishery; 
young fish are unlikely to be fully available to fisheries located in the north, and old fish 
are unlikely to be fully available to fisheries south of Point Conception. 
 
Off California, sardine spawning biomass estimated from catch-at-age analysis averaged 
3.5 million MT from 1932 through 1934. Biomass fluctuated between 1.2-2.8 million MT 
over the next ten years, then declined steeply from 1945 through 1965, with some short-
term reversals following periods of particularly successful recruitment (Murphy 1966; 
MacCall 1979). During the 1960s and 1970s, spawning biomass levels were thought to be 
less than about 5,000-10,000 MT (Barnes et al. 1992). The sardine stock began to increase 
by an average rate of 27% annually in the early 1980s (Barnes et al. 1992). Recent 
estimates of the northern stock (Conser et al. 2004) indicate that the total biomass of 
sardine age one or older is greater than 1 million MT. 
 
Recruitment success in sardines is generally autocorrelated and affected by 
environmental processes occurring on long (decadal) time scales. Lluch-Belda et al. 
(1991) and Jacobson and MacCall (1995) demonstrated relationships between 
recruitment success in Pacific sardine and sea surface temperatures measured over 
relatively long periods (i.e., 3-5 years). Their results suggest that equilibrium spawning 
biomass and potential sustained yield are highly dependent upon environmental 
conditions associated with elevated sea surface temperatures. 
 
Recruitment of Pacific sardines is highly variable. Analyses of the sardine stock 
recruitment relationships have been controversial, with some studies showing a density-
dependent relationship (production of young sardines decline at high levels of 
spawning biomasses) and other studies showing no relationship (Clark and Marr 1955; 
Murphy 1966; MacCall 1979). The most recent study (Jacobson and MacCall 1995) found 
both density-dependent and environmental factors to be important. MacCall (1979) 
estimated that the average potential population growth rate of sardines was 8.5% during 
the historical fishery off California while the population was declining. He concluded 
that, even with no fishing mortality, the population on average was capable of little 
more than replacement. Jacobson and MacCall (1995) obtained similar results for cold, 
unproductive regimes, but also found that the stock was very productive during 
warmer regimes. 
 
The maximum sustainable yield (MSY) for the historical Pacific sardine population was 
estimated to be 250,000 MT annually (MacCall 1979; Clark 1939), which is far below the 
catch of sardine during the peak of the historical fishery. Jacobson and MacCall (1995) 
found that MSY for sardines depends on environmental conditions, and developed a 
stock-recruitment model that incorporates a running average of sea-surface 
temperatures measured off La Jolla, California. This stock-recruitment model has been 
used in recent assessments. 
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Status of the Populations 
 
The US National Marine Fisheries Service conducts annual Pacific sardine northern 
stock assessments to establish annual harvest guidelines (quotas) for the US coast-wide 
fishery. The most recent assessments for the northern stock, northern Baja California to 
Alaska, were conducted and by Hill et al. (2006) using an Age Structured Assessment 
Program (ASAP), a forward simulation, likelihood-based, age structured model; and 
Hill et al. (2007) using a Stock Synthesis 2 (SS2) model. For the assessments, they 
included Ensenada landings (Table 2), because they belong to the northern stock, so 
these catches have to be considered in the fishing mortality parameters. These results 
reflect the biological potential of the stock that Ensenada fishermen are exploiting. 
 
Results from the final base model indicate a decline in stock productivity (recruits per 
spawning biomass) which began in the mid-1990s. Recruit (age-0) abundance increased 
rapidly from low levels in 1982-83, peaking at 24.6 billion fish in 1998. Recruitment has 
subsequently declined to between 1.0 and 9.7 billion fish/year since that time, with the 
exception of a strong 2003 year class (YC). Recruit abundance is poorly estimated for the 
most recent years; however, the 2003 YC was estimated to be 16.5 billion fish (Hill et al. 
2007). There was a large proportion of 2003 YC in the catch, as well as a relatively high 
abundance of this YC in fishery-independent trawl surveys off California and the Pacific 
northwest. Stock biomass (fishes age 1 and older) estimates from the base model begin at 
very low levels in 1981 (Hill et al. 2006), rapidly increase to a peak of over 1.7 million 
metric tons in 2000, and subsequently trend downward to 832,706 metric tons in 2007 
(Figure 4) (Hill et al. 2007). Total exploitation rate (catch/stock biomass) was relatively 
high during the early period (mid-1980s) in the northern stock, but declined as the stock 
underwent the most rapid period of recovery. Total exploitation was lowest (~7%) in 
2000 and has since gradually increased to approximately 15% (Hill et al. 2007).  
 
Sardine products 
 
Before the 1990’s sardine canneries were well established in Ensenada, but due to 
changes in demand, the canneries closed at the end of the 1990’s. Today, Pacific sardines 
in Ensenada yield fresh fish, frozen fish, fish oil, fishmeal, and other derivatives from 
reduction. The reduction industry for fishmeal and fish oil started during the 1970s, 
1980s and part of the 1990s when anchovy began to be processed. After landings of the 
northern anchovy were gone due to natural population changes between the two 
species, Pacific sardines were the most important resource for fishmeal. Today the 
demand is less than 10,000 MT/year (~0.5% of the annual sardine landings at Ensenada), 
and they produce mostly fish meal, fish oil, and pharmaceuticals (Table 3 and Figure 5). 
 
There has been an increase in international demand for frozen sardines for tuna 
ranching, bait, and human food, causing the closure of all sardine canneries in Ensenada 
by the end of the 1990s (Raúl del Moral, personal communication). This development 
has resulted in high prices per ton paid to sardine boats (depending on the fish quality 
[Table 4]). Recently, processors of frozen sardines used ~70% of the Pacific sardine 
landings at Ensenada (Figure 5), although in 2006 they used less than 50% of landings 
(Table 3; Martínez Guerrero 2007). 
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With the development of CBTA in the area, demand for fresh sardines has grown 
(Figure 5), becoming the most important use of the Pacific sardine landings in 2006 
(~50%; Table 3; Martínez Guerrero 2007). However, in 2007, due to an intense upwelling, 
coastal waters were unusually cold in the main sardine fishing grounds for the northern 
stock. As a result, the stock moved offshore where sardine boats usually did not fish. 
Stocks also moved south off San Quintin, where fish quality diminishes after transport 
to Ensenada (Timothy Baumgartner, CICESE, personal communication). As a result, 
during the 2007 tuna growing season, Pacific sardines of the right quality for the CBTA 
ranches were scarce. For the first time, bluefin tuna producers were forced to use frozen 
Pacific sardines acquired from San Pedro, California, USA (Raul del Moral, UABC, 
personal communication). 
 
Management History 
 
The most important management regulations used today were enacted in 1983. Before 
that, one national regulation was the prohibition of using Pacific sardines as a source of 
fish meal; all was to be used as human food (issued in 1934). After the results of several 
fish biology studies, in 1983 the authorities began to issue regulations for the 
management of the fishery in the Gulf of California; they established a minimum fishing 
size of 150 mm standard length (SL), allowing only 20% of the catch to be below this 
size. In 1987 a minimum allowable size of 150 mm was established for the sardine 
fishery of the western coast of the Baja California peninsula, except that 30% of the catch 
was allowed to be smaller than 150 mm. During 1987 to 1990 several closed areas and 
closed seasons were established for both the west coast of the peninsula and in the Gulf 
of California. In 1993, and only for the Gulf of California, a closed season of two weeks 
was established during the reproductive peak in this area. 
 
During the same year (1993), a new approach was used for the normalization of the 
management of several fisheries in Mexico, including small pelagics. The Official 
Mexican Norm (NOM), NOM-003-PESC-1993, was published in December 1993 and 
established minimal sizes of 150 mm SL; species minimal sizes were also established for 
other small pelagics. The NOM also established a moratorium on fishing effort. New 
fishing vessels were not allowed to enter the sardine fishery in Mexican Pacific waters 
north of the 20◦ N. The only new vessels allowed to enter the fishery were new vessels 
that replaced old ones; these vessels were required to have new refrigeration systems on 
board. Sardine fishing vessels without refrigeration were not permitted to fish further 
than 40 nautical miles (nm) off the coast. Also, the NOM rules stated that fisheries 
authorities would implement closed fishing seasons if it was determined that sardine 
reproductive capacities had declined to the point where the fish required protection. 
However, to date, for the sardine fishery based in Ensenada, no closed seasons have 
been established.  
 
Recently, a new set of baseline rules were published for all fisheries in Mexico (National 
Fisheries Chart 2004), where in addition to the NOM standards, reference points were 
established. A maximum sustainable yield of 410,000 MT for small pelagics was 
established; however, this yield is for all small pelagic species grouped together. Also, 
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the National Chart recognized that there is an underutilization of the industrial 
infrastructure of this fishery. 
 
Traditionally, the sardine industry of Ensenada was composed of fishing companies, 
canneries and fish reduction companies (fishmeal, oil and other products). Recently this 
structure has changed, with the addition of frozen fish processing companies for the 
national and international commercialization of frozen sardine used as bait and feed 
(including capture based bluefin tuna aquaculture companies in other countries). 
Sardine canneries went out of business in Ensenada ~8 years ago with these changes 
(SPPMBC 2006).  
 
During 2005, these industries organized themselves and formed the State Committee of 
the Small Pelagic Production System of Baja California (SCSPPSBC). This organization 
tries to analyze the production chain of the Pacific sardine and develop a plan to solidify 
the fishery in the region (SPPMBC 2006). The SCSPPSBC is composed of 14 fishing 
companies, 9 processing companies, 3 fish meal companies, 3 commercialization 
companies, and 10 capture bluefin tuna aquaculture companies, all based in Ensenada. 
Also represented in this organization are the federal government, the National Chamber 
of Fishery and Aquaculture Industry, the National Institute of Fisheries, and the local 
university (UABC). This organization has finished its development plan (SPPMBC 2006) 
and is looking for funding sources in order to enhance the product value chain. 
 
Pacific Sardines and the CBTA Ranches: Future Scenarios  
 
Ensenada’s Pacific sardine fishery catches a high proportion of juveniles. While it is 
known that fishing on recruits can cause problems to a fishery, sardine stock 
assessments to now have found no effects of the Mexican fishery on the northeastern 
Pacific sardine stock. Total catch (Ensenada, US and Canada) for the northern stock has 
not yet reached the level of the MSY of 250,000 MT. However, the recent increase of 
mortality rates and the decrease of spawning biomass have to be addressed. If the stock 
productivity continues to decline, management agreements between the USA, Canada 
and Mexico might be needed.  
 
Studies suggest that in Pacific sardine the equilibrium of the spawning biomass and 
maximum sustainable yield is highly dependent on the variability of oceanographic 
conditions. The future of the population status of Pacific sardines depends on future 
environmental conditions. Nevertheless, we can envision three possible scenarios for the 
future of the CBTA industry with respect to their demands for Pacific sardines: 
 
1. If CBTA production continues at today’s level, sardine production can continue for 

some years, although recruitment overfishing could occur with the present practice 
of fishing on juvenile sardines near the coast;  
 

2. If CBTA production is increased, the demand for sardines will be higher and six 
possible options could occur: a) acquire sardines from other Mexican stocks 
(southern and Gulf of California stocks); b) It has been shown that the Ensenada 
sardine fleet operates at only 25% of its storage capacity (an estimated 75% of the 
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sardine fleet is in poor condition); so, improving the current fleet capacity could 
cover the demands for sardines; c) develop a new trawl fishery offshore (greater than 
40 nm) targeting larger fish with a potential larger catch; d) import sardines from 
USA; e) import sardines from other countries (other international stocks); or f) 
change the fish species used for feeding the tuna to, for example, Pacific mackerel 
(Scomber japonicus), as is being done in Japan. 

 
3. Develop formulated diets for bluefin tuna to reduce dependence on stocks of Pacific 

sardines. 
 
Literature Cited 
 
Ahlstrom, E. H. 1960. Synopsis on the biology of the Pacific sardine (Sardinops caerulea). 

Proc. World Sci. Meet. Biol. Sardines and Related Species, FAO, Rome, 2: 415-451 
Anónimo. 2006. Anuário Estadístico de Pesca y Acuicultura. CONAPESCA, SAGARPA, 

Mazatlán, México. 
http://www.conapesca.sagarpa.gob.mx/wb/cona/cona_anuario_estadistico_de
_pesca 

Anonymous, 2007.  Open Ocean Aquaculture and the Channel Islands National Marine 
Sanctuary-Feedlots in the Wilderness?  L. Krop, Chair, Conservation Working 
Group of the Channel Islands National Marine Sanctuary Advisory Council, 
NOAA (DOC), Draft Conservation Working Group Report, January 12, 2007.  82 
pp including appendices. 

Baumgartner, T.R., A. Soutar, and V. Ferreira-Bartrina. 1992. Reconstruction of the 
history of the Pacific sardine and northern anchovy populations over the past 
two millennia from sediments of the Santa Barbara Basin, California. CalCOFI 
Rep. 33: 24-40. 

Baumgartner, T.R., C. Sanchez, S. de la Campa, N. Lo. R. Charter, Y. Green, and E. 
Cotero. 2006. Spawning biomass estimates for the Pacific (Sardinops sagax 
caeruleus) off Baja California, Mexico, during April, 2002, and April, 2003. Oral 
presentation abstract, in N.C.H. Lo, A. Allen, and S.Z. Herzka (eds.) Minutes of 
the 2005 trinational sardine forum, Ensenada, Baja California, Mexico, November 
14-15, 2005. NOAA, NMFS, SWFSC, Administrative Report LJ-06-06: 97-118. 

Barnes, J. T., L. D. Jacobson, A. D. MacCall, and P. Wolf. 1992. Recent population trends 
and abundance estimates of the Pacific sardine (Sardinops sagax). CalCOFI Rep. 
33: 60-75. 

Bentley, P. J., R. L. Emmett, N. C. H. Lo and G. Moser. 1996. Egg production of Pacific 
sardine (Sardinops sagax) off Oregon in 1994. CalCOFI Rep. 37:193-200. 

Bowen, B.W. and W.S. Grant. 1997. Phylogeography of the sardines (Sardinops spp.): 
Assessing biogeographic models and population histories in temperate 
upwelling zones. Evolution 51: 1601-1610. 

Butler, J. L. 1987. Comparisons of the larval and juvenile growth and larval mortality 
rates of Pacific sardine and northern anchovy and implications for species 
interactions. Ph. D. Thesis, Univ. Calif., San Diego, 240 pp. 

Butler, J.L., P.E. Smith, and N.C.H. Lo. 1993. The effect of natural variability of life-
history parameters on anchovy and sardine population growth. CalCOFI Rep. 34: 
104-111. 



54 
 

Chavez, F.P. J. Ryan, S.E. Lluch-Cota, C.M. Ñiquen. 2003. From anchovies to sardine and 
back: multidecadal change in the Pacific Ocean. Science 229: 217-221. 

Cisneros-Mata, M.A., M.O. Nevárez-Martínez, and MG. Hammann. 1995. The rise and 
fall of the Pacific sardine, Sardinops sagax caeruleus, Girard, in the Gulf of 
California, Mexico. CalCOFI Rep. 36:136-143. 

Clark, F. N. 1939. Can the supply of sardines be maintained in California waters? Calif. 
Fish and Game 25: 172-176. 

Clark, F.N., and J.F. Janssen. Jr. 1945. Movements and abundance of the sardine as 
measured by tag returns. Calif. Div. Fish Game Fish. Bull. 61: 7-42. 

Clark, F. N., and J. C. Marr. 1955. Population dynamics of the Pacific sardine. CalCOFI 
Prog. Rep. 1 July 1953-31 March 1955: 11-48. 

Conser, R., K. Hill, P. Crone, N. Lo, and R. Felix-Uraga. 2004. Assessment of the Pacific 
sardine stock for U.S. management in 2005: Pacific Fishery Management Council, 
November 2004. 135 p. 

Cota Villavicencio, A., y R. Troncoso Gaytán. 2007. Comportamiento de la pesquería de 
pelágicos menores durante la temporada 2006 en Baja California. En: Memorias 
del XV taller de pelágicos menores. Comité técnico de pelágicos menores. La Paz, 
BCS, 2-4 de mayo de 2007. 

Félix-Uraga, R. R.M. Alvarado-Castillo, and R. Carmona-Piña. 1996. The sardine fishery 
along the western coast of Baja California, 1981 to 1994. CalCOFI Rep. 37: 188-
192. 

Felix-Uraga, R., V.M. Gómez-Muñoz, C. Quiñónez-Velázquez, F. Neri Melo-Barrera, and 
W. García-Franco. 2004. On the existence of Pacific sardine groups off the west 
coast of Baja California and southern California. CalCOFI Rep. 45: 146-151. 

Felix-Uraga, R., V.M. Gómez-Muñoz, C. Quiñónez-Velázquez, F. Neri Melo-Barrera, K. 
Hill, and W. García-Franco. 2005. Pacific sardine stocks discrimination off the 
west coast of Baja California and southern California using otolith morphometry. 
CalCOFI Rep. 46: 113-121.  

Grant, W.S., A.-M. Clark, and B.W. Bowen. 1998. Why restriction fragment length 
polymorphism analysis of mitochondrial DNA failed to resolve sardine 
(Sardinops) biogeography: insights from mitochondrial DNA cytochrome b 
sequences. Can. J. Fish. Aquat. Sci. 55: 2539-2547.  

Hargreaves, N.B., D.M. Ware, and G.A. McFarlane. 1994. Return of the Pacific sardine 
(Sardinops sagax) to the British Columbia coast in 1992. Can. J. Fish. Aquat. Sci. 51: 
460-463. 

Hart, J.L. 1973. Pacific fishes of Canada. Fish. Res. Board Can. Bull. 180: 740 p. 
Hedgecock, D., E.S. Hutchinson, G. Li, F.L. Sly, and K. Nelson. 1989. Genetic and 

morphometric variation in the Pacific sardine, Sardinops sagax caerulea: 
comparisons and contrast with historical data and with variability in the 
northern anchovy, Engraulis mordax. Fish. Bull. 87: 653-671.  

Hill, K.T., E. Dorval, N.C.H. Lo, B.J. Macewicz, C. Show and R. Felix-Uraga. 2007. 
Assessment of the Pacific sardine resources in 2007 for U.S. management in 2008. 
Pacific Fishery Management Council working paper. 250 pp. 

Hill, K.T., N.C.H. Lo, B.J. Macewicz, and R. Felix-Uraga. 2006. Assessment of the Pacific 
sardine (Sardinops sagax caerulea) population for US management in 2006. NOAA-
TM-NMFS-SWFSC-386: 66 pp. 



55 
 

Jacobson, L. J. and A. D. MacCall. 1995. Stock-recruitment models for Pacific sardine 
(Sardinops sagax). Can. J. Fish. Aquat. Sci. 52:566-577. 

Lehodey P., J. Alheit , M. Barange , T.R. Baumgartner Mcbride, G. Beaugrand, K. 
Drinkwater , J.M. Fromentin , S.R. Hare , G. Ottersen , R. Ian Perry , C. Roy , C.D. 
Van Der Lingen , and F. Werner . 2006. Climate variability, fish, and fisheries. 
Journal of Climate. 19(20): 5009-5030. 

Lluch-Belda, D., R.J.M Crawford, T. Kawasaki, A.D. MacCall, R.A. Schwartzoles, and 
P.E. Smith. 1989. Worldwide fluctuations of sardine and anchovy stocks: the 
regime problem. S. Afr. J. Mar. Sci. 8: 195-205. 

Lluch-Belda, D., D.B. Lluch-Cota, S. Hernandez-Vazquea, C.A. Salina-Zavala. 1991. 
Sardine and anchovy spawning as related to temperature and upwelling in the 
California Current system. CalCOFI Rep. 32: 105-111. 

Lo, N. C. H., Y. A. Green Ruiz, Merecedes J. Cervantes, H. G. Moser, R. J. Lynn. 1996. 
Egg production and spawning biomass of Pacific sardine (Sardinops sagax) in 
1994, determined by the daily egg production method. CalCOFI Rep. 37:160-174. 

MacCall, A. D. 1979. Population estimates for the waning years of the Pacific sardine 
fishery. CalCOFI Rep. 20: 72-82. 

Macewicz B. J, J. J. Castro-Gonzalez, C. E. Cotero Altamirano, and J. R. Hunter. 1996. 
Adult reproductive parameters of Pacific Sardine (Sardinops sagax) during 1994. 
CalCOFI Rep. 37:140-151. 

Martínez Guerrero, S.A. 2007. Diagnóstico del sistema de producto pelágicos menores en 
B. C.  Informe Interno, Guía instruccional No. 4, Comité Estatal Sistema Producto 
Pelágicos Menores en B. C. 42 pp. 

McFarlane, G.A., and R.J. Beamish. 2001. The re-occurrence of sardines off British 
Columbia characterizes the dynamic nature of regimes. Prog. Oceanogr. 49:151-
165. 

Murphy, G.I. 1966. Population biology of the Pacific sardine (Sardinops caerulea). Procc. 
Cal. Ac. Sci. Fourth series 34:1-84. 

Nevárez Martínez, M.O., M.A. Martínez Zavala, C.E. Cotero Altamirano, M.L. Jacob 
Cervantes, Y. Green Ruiz, G. Gluyas Millán, A. Cota Villavicencio, y P. Santos 
Molina. 2006. Peces Pelágicos Menores. En: Instituto Nacional de la Pesca (eds.), 
Sustentabilidad y Pesca Responsable en México: evaluación y manejo. 
SAGARPA, México DF. 263-301. 

Parrish, R.H., R. Serra, and W.S. Grant. 1989. The monotypic sardines, Sardina and 
Sardinops: their taxonomy, distribution, stock structure and zoography. Can. J. 
Fish. Aquat. Sci. 46: 2019-2036. 

Phillips, J. B. 1948. Growth of the sardine, Sardinops caerulea, 1941-42 through 1946-47. 
Calif. Div. Fish Game Fish Bull. 71: 33 p. 

Smith, P. E. 1978. Biological effects of ocean variability: time inferred from fish scales in 
anaerobic sediments off California. CalCOFI Rep. 13: 63-70. 

Smith, P. 2005. A history of proposal for subpopulation structure in the Pacific sardine 
(Sardinops sagax) population off western North America. CalCOFI. Re. 46: 75-82. 

SPPMBC. 2006. Plan Rector del Sistema Producto de Pelágicos Menores de Baja 
California. CIDETE-UABC, Ensenada, BC, México. 270 pp. 

 
 
 



56 
 

 
 
 

Table 1.  Mean Mexican Pacific sardine landings in metric tons (MT, live weight) 
during the 1995-2006 period, by fishing area and stock, with percentages of national 

landings  
(Hill et al 2007). 

 
Fishing Areas/Stocks Landings (MT)   % 

Baja California (Pacific side) /Northern stock 50,616         23 
Southern Baja California/Southern stock 30,344         13 
Gulf of California/Gulf of California 140,696         63 
Other regions in the Mexican Pacific 1,234         <1 
TOTAL 222,891 
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Table 2. Coast-wide landings (MT) of Pacific sardines from 1983 to 2006 (modified 
from Hill et al. 2006). Ensenada landings for 2005 were taken from SPPMBC (2006) 

and for 2006 from Cota and Troncoso (2007). 
 

Years Ensenada USA Canada Total 
1983 274 1 0 274 
1984 0 1 0 1 
1985 3,722 6 0 3,728 
1986 243 388 0 631 
1987 2,432 439 0 2,871 
1988 2,035 1,188 0 3,223 
1989 6,224 837 0 7,061 
1990 11,375 1,664 0 13,040 
1991 31,392 7,587 0 38,979 
1992 34,568 17,950 0 52,518 
1993 32,045 15,345 0 47,390 
1994 20,877 11,644 0 32,520 
1995 35,396 40,327 25 75,748 
1996 39,065 32,553 88 71,706 
1997 68,439 43,245 34 111,718 
1998 47,812 42,956 745 91,514 
1999 58,569 60,039 1,250 119,858 
2000 67,845 67,985 1,718 137,549 
2001 46,071 75,800 1,600 123,472 
2002 46,845 96,896 1,044 144,785 
2003 41,342 71,864 954 114,159 
2004 41,897 89,338 4,259 135,494 
2005 56,684 90,130 3,232 156,046 
2006 57,070 90,776 1,595 149,809 
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Table 3. Percentages of final use are for Pacific sardines by Mexican states in 2006.  
Frozen fish are intended for export; “Other” means local markets or intermediary 

companies. CBTA is capture-based tuna aquaculture (Martínez Guerrero 2007). 
 

States Fishmeal Canneries Frozen CBTA Other 
Baja California 0.5 0 42.4 53.0 4.1 
Baja California Sur 20.0 29.9 50.1 0 0 
Sonora 77.0 18.5 4.5 0 0 
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Table 4.  Pacific sardine prices (US$/MT) are for final use in the Mexican market 
(Martínez Guerrero 2007).  Frozen fish prices are for those destined for export. CBTA 

is capture-based tuna aquaculture. 
 
 

 
 

Sardine types 

 
Prices 

US$/MT 

 
Purposes 

Fresh sardines 80 Frozen fish 
Fresh sardines 45 Fishmeal 
Fresh sardines 70-80 CBTA 

Frozen sardines 200 CBTA 
Fresh sardines A class (large) 85 CBTA 

Fresh sardines B class (medium) 75 Frozen fish 
Fresh sardines C class (small) 55 Frozen fish 

Sardines in poor condition 60 Frozen fish 
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Figure 1. Abundance indices of Pacific sardines (top) and northern anchovies (below) 
based from fish scales in sediment cores in the Santa Barbara basin. The gray dotted 

line is the recent catch (Lehodey et al. 2006). 
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Figure 2. Observed catch by species in metric tons of Pacific sardines and northern 
anchovies relative to the maximum peak value during the last century in California, 

USA (Lehodey et al. 2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



62 
 

 
 

 
Figure 3. Distribution of Pacific sardine stocks (dashed lines show limits) and 
main Mexican fishing areas (grey areas) (modified from Nevárez et al. 2006). 
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Figure 4. Stock biomass (fish age 1 and older) estimates from Hill et al. (2007) 
for the Pacific sardine northern stock.
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Figure 5. Yearly percentages of use of the Pacific sardines landed in Ensenada 
(SPPMBC 2006). “Procesadoras” is frozen fish; “Harineros” is fishmeal, and 
“Granjas de Atun” means delivered to capture-based tuna aquaculture. Data 

for 2006 can be seen in Table 3. 
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Chapter 4 
 

Environmental and Socio-Economic Impacts of Capture-Based 
Tuna Aquaculture (CBTA) in Mexico 

 
 
Environmental Status of Capture-Based Tuna Aquaculture (CBTA) in Mexico 
 
CBTA shares similar concerns with cage culture of other carnivorous fish, such as 
organic pollution in the water column and the sediments, concerns about diseases, 
impacts on feedstock and forage fisheries, and impacts on sea mammals and birds 
(Cheshire et al. 1996). The degree of impact from the effluent wastes of cage aquaculture 
is dependent on the species biomass, culture and feeding methods, and on the nature of 
the receiving environment in terms of its physics, chemistry, and biology (Wu 1995).  
 
The key environmental impacts of CBTA are related to the feeding of sardines and fish 
excretion, which is high due to the use of fresh and defrosted sardines, and because 
bluefin tuna have poor food conversion ratios (Chapter 1; Vita and Marin 2007). Bluefin 
tuna are normally overfed and food conversion ratios commonly range from ~15 to 25:1 
(on a wet weight basis) (Chapter 1; Aguado-Giménez & García-García 2005; Aguado-
Giménez et al. 2006). The daily feeding rate of defrosted sardines is approximately 5-8% 
of body biomass (FAO 2004). High intensity feeding of sardines may result in an excess 
of sardine wastes entering the environment, leading to an organic enrichment of the 
sediments, and disturbance of benthic communities. In addition, birds and sea lions eat a 
considerable amount of the sardines fed to tuna, and this causes a large amount of bird 
feces to enter the water.  
 
CBTA, however, represents in many ways a lower risk to the environment compared 
with cage aquaculture of other carnivorous fish, such as salmon. In the case of CBTA, 
fish are grown for four to nine months. The site is fallow for the remainder with no food 
or feces introduced, thus giving an opportunity for ecosystem recovery. Ranched 
Northern Bluefin Tuna (NBT) are fed frozen or fresh sardines; no feed pellets containing 
large amounts of organic carbon are wasted (Chapter 1). Also, because farmed NBT 
comes from natural populations, there is no risk of introducing exotic or genetically 
improved species into the system that could cause negative interactions with wild stocks 
if they escape from the pens. NBT, in particular, is also recognized as a species resistant 
to disease (Munday et al. 2003; Sawada et al. 2005). Although several parasites have been 
identified for NBT, so far they have not represented serious problems (Deveney et al. 
2005; Munday et al. 2003). 
 
Recently, Fernandes et al. (2007 a,b) estimated nitrogen loads from southern bluefin tuna 
aquaculture in south Australia based on feed inputs, fish metabolism, and 
environmental data. The authors estimated that 86-92% of the nitrogen (N) was lost as 
dissolved wastes and only a small proportion was retained in fish tissue (7-12% of feed 
inputs) or excreted as feces. The low nitrogen retention in southern bluefin tuna is 
partially explained by the high metabolic rates of tuna (Korsmeyer and Dewar 2001), 
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which are three or more times higher than other finfish aquaculture species. These 
processes, combined with the low settling velocity of tuna feces, and the effects of 
scavenger feeding, lead to minimal impacts to the benthos. The authors concluded that 
the nature of tuna wastes suggest low and localized impacts at current stocking densities 
and ranching practices. 
 
The extent of environmental impact by CBTA in Mexico may be difficult to determine 
due to its recent development.  For the same reason, the amount of scientific studies 
related to CBTA in the region is very scarce.  Nevertheless, we were able to obtain recent 
local information, in some cases from studies presently in progress, which may lead to 
drawing some preliminary conclusions.  We also addressed some specific, critical issues 
of CBTA in Mexico regarding the level of governance and enforcement presently 
practiced, especially the killing of sea mammals (Dalton 2004). 
 
Environmental Impact Assessments (EIAs)  
 
Environmental Impact Assessments (EIAs) are required by Mexican law for CBTA. 
These EIA state potential physical-chemical impacts on the pelagic and benthic 
ecosystems derived from three sources: direct excretion of NBT; uneaten food that 
reaches the bottom and consumes oxygen during decomposition; and waste from 
workers from vessels around the tuna cages. It is well known that nitrogen and 
phosphorus are the main pollutants arising from CBTA (Aguado-Giménez et al. 2006; 
Fernandes et al. 2007). The main effects would be a reduction of oxygen in the water 
column or at the bottom that may cause changes or mortalities to benthic fauna, and, 
possibly, tuna mortalities. Another potential effect could be the spillage of oil or gasoline 
from the boats working around the cages.   
 
Concessions for CBTA state that a company is obligated to maintain an environmental 
monitoring program. Initially, no specific variables or sampling frequencies were 
defined. However, all ranchers were required to maintain an environmental monitoring 
program. Some ranches hired the services of UABC, CICESE, or private consulting 
companies. Others hired external services and maintained their own monitoring 
programs. SEMARNAT (Ministry of the Environment and Natural Resources) requested 
environmental quality data from the ranches, which required reports on the amount of 
nutrients in the water column. However, due to changes in the law, the Mexican Navy 
became the official entity responsible for requesting and verifying the quality of the 
seawater and sediment around the ranches. The parameters and sampling frequencies 
became uniform for all companies as of January 2007 (Table 1). For a brief time period, 
sediment samples for lead, copper, zinc and iron were also required, but these are not 
required today. The Navy does their own sampling, at least twice a year, to verify the 
reports given by the companies. When red tide events occur, the Navy does specific 
sampling at the sites they consider pertinent as a way to have an independent 
verification of water quality.  
 
Companies have more reasons than the government enforcement agencies to maintain 
an environmental monitoring program. In most cases, ranches are concerned about 
polluting the environment around their ranches, because they will be the first affected. 
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In places where several companies share the same bay, as in Salsipuedes Bay, it is 
important for each company to have evidence that they are not the source of an 
environmental problem that can affect neighboring ranches. We know of at least one 
case where ranching activities are insured by an international company that demands a 
monitoring program in order to assure compensation for possible losses. Therefore, 
environmental monitoring is often practiced by ranches without the need for strict 
enforcement by government. In fact, while phytoplankton monitoring is not demanded 
by the Navy, some companies maintain regular phytoplankton analysis (Parlange-
Lamshing 2006). Occasionally, trace metal analyses of the sediments and the tuna have 
been requested by the companies and performed by UABC and CICESE. 
 
Impacts on the Water Column 
 
In spite of the fact that there are several institutions devoted to research and education 
in marine sciences in the Ensenada region, environmental baseline data at the sites 
where the CBTA ranches are located is very scarce. However, for nutrients and bacteria 
there are studies in adjacent coastal areas that provide ranges of values to be expected in 
polluted (at the discharge of the city water treatment plant) and pristine areas (such as 
the FDA certified areas for shellfish culture in the southern part of Ensenada Bay).  
However, data for ammonia (NH4) for the Ensenada Bay are scarce (Table 2). 
 
Because nutrient analyses are required by law, and The Navy is responsible for verifying 
the information, presently there is a nearly continuous monitoring of nutrients at the 
tuna ranches and adjacent marine areas. The Navy is responsible for declaring if there is 
any damage to the environment. So far, there have been no adverse reports due to 
CBTA. Data from April 2007 obtained by The Navy and made available for this report 
shows minimum-maximum values of NO3, NH4 and PO4 of 0.039-1.75, 0.020-0.082, and 
0.033-0.279 mg/l, respectively, taken at the surface and the bottom in a series of 21 
stations along the Salsipuedes Bay. Low nutrients around the ranches are not surprising 
since, presently, all CBTA ranches in Mexico are located in relatively open areas with 
significant circulation.    
 
Red tides 
 
Red tides may occur every year off the Pacific coast of Baja California during the spring 
and can remain through the summer (Peña-Manjarrez et al 2001). Red tides are a major 
threat to CBTA. Ranches have had to move cages offshore to avoid tuna mortalities and, 
although this practice solves the problem, it represents an important increase in costs. 
 
Historical data, at least since 1901, on red tides in the southern California region shows 
that they occur during the spring and early summer (Holmes et al. 1967). However, the 
frequency of blooms is quite variable. The Mexican Navy maintains a routine 
monitoring program on the water quality of the Pacific Coast, Gulf of Mexico, and the 
Mexican Caribbean with the purpose of contributing to the protection and conservation 
of the marine environment. This program includes the monitoring of red tides (Acosta-
Chamorro et al. 2003, Curiel-Mondragón 2007, Juárez-Romero et al. 2005). From 1975 to 
1994, there was an interruption in the annual blooms in this region except for some 
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localized events along the coast of Los Angeles, during 1976 and 1977.  The intensity and 
population structure of the blooms are also variable; before 1975, the dominant species 
was Prorocentrum micans, while the most intense blooms during late summer and early 
fall were associated with Lingulodinium polyedrum (Peña-Manjarrez et al. 2001). Since 
1995, red tides have occurred in the region regularly. It has been speculated that this is 
caused by the increase in the surface temperature and the increased availability of 
inorganic nutrients (Acosta-Chamorro et al. 2003).  
 
After the El Nino 1997-98 event, two strong red tides appeared in Todos Santos Bay, the 
first in February and March of 1999, and the second from April to June of 2000 (Acosta-
Chamorro et al. 2003). No major events were present in 2001. In 2002, an isolated event 
20 km south of Todos Santos Bay affected two tuna ranches (Acosta-Chamorro et al. 
2003, Orellana-Cepeda et al. 2002). A Ceratium furca patch, with concentrations of 107 
cell/l, was observed days prior to the event 10-12 km south of the ranches. A sudden 
change in wind direction caused by Hurricane Hernan transported the patch to the area 
of the NBT cages causing a massive die off of NBT within six hours. The authors 
considered that even the most seemingly benign phytoplankton species at great 
densities could cause serious damage to NBT (Orellana-Cepeda et al. 2002). In order to 
reduce the effect of red tides, one company sponsored a study to determine the proper 
phytoplankton sampling frequency for different times of the year (Parlange-Lamshing 
2006).  
 
Since 2003, The Mexican Navy, in collaboration with the National Program for Bivalve 
Mollusks, started monthly monitoring for red tides in four stations in Todos Santos Bay 
(Acosta-Chamorro et al. 2003). When a red tide event is present, weekly samples are 
taken and the number of stations is increased by sampling directly on the sites affected 
(Curiel-Mondragón 2007, Juárez-Romero et al. 2005). At the beginning of 2005 a large red 
tide event covered a large area of Todos Santos Bay. The Navy reported that this red tide 
event occurred in three phases: initially, the dominant species was Lingulodinium 
polyedrum; next, a mixture of species was present (L. polyedrum, Gyrodinium undulans and 
Ceratium furca); in phase three, at the end of August, the bloom was dominated by the 
diatom Cylindrotheca closterium (Juárez-Romero et al. 2005). During this bloom ranchers 
moved their cages, and fish mortalities were reduced. 
 
Baja California is a region recognized for its mollusk cultivation. Oysters have been 
grown commercially since the mid-seventies and mussel farms present since the mid-
eighties. Since its beginning, the industry has had to deal with red tide events. Some of 
the mollusk production is exported to the USA. In order to comply with the 
requirements for export, a bi-national program was established in the mid-eighties 
(Programa Nacional de Sanidad de Moluscos Bivalvos) led by the Ministry of Health 
(Secretaría de Salud). Mollusk farmers must meet US FDA sanitation requirements 
which include the certification of the areas where the cultures are located, as well as the 
regular analysis of shellfish. In order to certify an area for mollusk cultivation, two years 
of bi-monthly sampling are required. The water bodies and mollusks must meet US 
FDA standards. All analyses are carried out at a US FDA certified laboratory located at 
the Institute of Oceanography (Instituto de Investigaciones Oceanológicas) of UABC.  
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Presently, there is a contingency plan to monitor the presence of red tides. The plan is 
led by the Ministry of Health (SSA) with the participation of the Ministry of the 
Environment and Natural Resources (SEMARNAT), the Ministry of Agriculture, Rural 
Development, Fisheries and Food (SAGARPA), and the Mexican Navy (SEMAR). SSA is 
responsible for the coordination of all the participants and is also responsible for 
establishing fishing bans, sampling and establishing any actions to protect the 
population. Several academic institutions collaborate (UABC, CICESE, CETMAR) 
providing expertise on the analyses, toxins, and the identification of toxic organisms.   
 
Impacts on Benthic Species 
 
The deposition of particulate matter as uneaten food and fecal matter from cages has 
been identified as one of the main causes of the negative environmental impact of 
aquaculture (Gowen et al. 1991; Fernandes et al. 2007). The accumulation of wastes in the 
sediments causes an enrichment of organic matter that causes low oxygen values, 
carbon, nitrogen and phosphorous enrichment and a change in the sediment texture 
(Karakassis et al. 1998; Pawar et al. 2001). These conditions cause changes in the 
abundance and diversity of the benthic macrofauna that can be seen under the cages 
which decreases with distance from them (Brooks et al. 2003; Ritz el al. 1989; Vita and 
Marin 2007).  However, according to Graham and Dickson (2001) the extremely high 
metabolic rates of endothermic fish, such as bluefin, not only account for high nutrient 
loads to the environment, but also for a different partition between solid and dissolved 
wastes. 
 
Vita et al. (2004) evaluated the particulate organic waste output originated by CBTA in 
the Mediterranean Sea through direct measurements in the field with sediment traps. 
Particulate waste output from tuna fattening is qualitatively and quantitatively different 
from that produced in the culture of other Mediterranean fish such as sparids. The high 
digestibility of proteins in feeds results in a lower quantity of total particulate nitrogen 
discharged, but a higher dissolved inorganic nitrogen load. A similar result has been 
found in studies of CBTA in South Australia (Fernandes et al. 2007 a,b). As a result, the 
deposition rates of particulate organic matter from CBTA were lower than the values 
mentioned in the literature for the culture of other species. 
 
Vita and Marin (2007) recently reported the environmental impact of CBTA cages of 32 
m depth on benthic communities in the western Mediterranean. Benthic surveys carried 
out by these authors indicated that a zone of high impact was restricted to a radius of 
roughly 5 m from the cages with a transitional radius at 35 m. This zone was 
characterized by high densities of opportunistic species. There was a further zone of 
moderately stressed benthic communities extending to ~180 to 220 m from the cages. 
This moderately stressed zone showed an increase in the densities of some opportunistic 
species. At distances greater than 220 m from the tuna ranch, the ecosystem apparently 
returned to normal conditions. The fallow period produced partial remediation of the 
area affected, except in the sediments underneath the cages where a 6 month fallow 
period was not sufficient for the community to totally recover.  
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The presence of the ranches and the impacts on the benthic community have been 
studied in the area of Salsipuedes Bay, 15 km north of Ensenada, where three ranches 
are located. Most of these studies are in recent research theses (Díaz-Castaneda and 
Harris 2004; Rodríguez-Villanueva 2005; Valenzuela-Solano 2006). Rodríguez-
Villanueva (2005) studied the structure of the macrobenthic invertebrates and its 
relationship with physical-chemical variables of the sediment along the coastal zone 
from Tijuana to Ensenada including Salsipuedes Bay. Samples were obtained in August 
and September of 1998 and July 2001, just after the installation of the ranches. Fauna 
under the cages were composed mainly of polychaete worms, crustaceans, echinoderms, 
and mollusks. The study includes the description of the polychaete community, widely 
used as pollution indicators, in relation to temperature, salinity, dissolved oxygen, grain 
size, % organic carbon, PCBs, DDTs, and several trace metals. Two years later, 
Valenzuela-Solano (2006) specifically characterized the polychaetes of Salsipuedes Bay 
near the CBTA ranches to evaluate possible impacts. The study included samples taken 
in March 2003 and October 2004 and concluded that, so far, no important negative 
effects were detected in relation to the organic loading of the NBT cages. This was 
hypothesized to be due to the low density of the cages and the fact that the position of 
these cages is in an open, well flushed bay; however, the nearest samples were taken 250 
m from the cages (Valenzuela-Solano 2006). 
 
Preliminary results of a study in progress of samples collected in April of 2006 in 
Salsipuedes Bay, reported important changes in the polychaete community structure 
when compared with a study performed in 1998 by Valenzuela-Solano (2006). 
Observations reveal a displacement of the 1998 dominant species Amphiodia urtica and 
the presence of opportunistic species previously reported for polluted areas such as 
Tellina modesta, Monticellina siblina, and Armandia brevis associated with high values of 
organic matter (1-3.5%) (Valenzuela-Solano, personal communication). 
 
Impacts on marine mammals 
 
Tuna cages are very attractive environments for sea lions; they represent food and 
resting sites. For CBTA ranchers, however, sea lions are major nuisances since they can 
get inside the cages and eat tuna. Because all sea mammals in Mexico are protected by 
law, ranchers cannot kill or harass them. Besides the risk of losing their concessions, the 
killing of a marine mammal is penalized under Mexican law with one to nine years in 
prison (Artículo 420, Código Penal Federal Mexicano).  
 
Sea lions (Zalophus californianus) are very common along the coast of Baja California. 
Dense colonies inhabit the area near the ranches. They also are very efficient at 
colonizing new niches. All ranches have to deal with the presence of sea lions. During 
feeding operations 15 to 35 animals can be seen resting on the tuna cages (Figure 2). 
Sometimes, sea lions succeed in getting into the cages. Fishermen reported that one 
morning, one sea lion was able to bite 6 tuna of ~20-25 kg each. There have been reports 
of up to four sea lions within the same cage (J. Guzman, personal observations). 
Ranchers have established several measures to deal with the sea lions.  A net of 2.2 m 
high is placed around the cage to avoid the sea lions getting in, sirens that emit sound at 
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a frequency not audible to the human ear scare the animals, and, commonly, solar 
powered, electrified wires are placed around the cages (Figure 3).    
 
In 1998, a group of volunteers working in a non-governmental organization Ensenada 
Marine Mammal Research and Conservation (ICMME by its Spanish acronym) started 
systematically recording data from strandings that occur along Todos Santos Bay 
(Herrara 2002; Bravo et al. 2005). ICMME includes scientists and students from the 
Schools of Biology and Oceanography from UABC and volunteer citizens. One of the 
main objectives of this organization is to investigate and report cases of sea lions in 
distress. They maintain a census of live animals that have been beached and dead 
animals washed ashore. From January 1998 to September of 2004, 276 animals where 
found washed ashore. Eighty percent of the animals were sea lions (Zalophus 
californianus) followed by Phoca vitulina richardsi, Mirounga angustirostris, Delphinus 
delphis, Tursiops truncatus, Lagenorhynchus obliquidens, Steno bredanensis, Eschrichtius 
robustus, and Balaenoptera musculus, on the coast of Bahía Todos Santos, from Punta San 
Miguel to Rincón de Ballenas to the south. According to ICMME, it is estimated that in 
the region around Todos Santos Bay, where most of the CBTA ranches are located, there 
are about 400 marine animals (http://icmme.ens.uabc.mx).  
 
Mortalities of marine mammals may be caused by natural or anthropogenic factors. 
Marine mammals die as a result of starvation, predation, trauma, and diseases (Geraci et 
al 1999). Sea lions are also killed by entanglement in fishing gears (Zavala-González and 
Mellink 1997). This is related to the fact that sea lions frequently approach both 
commercial and sport fishing vessels and take fish from the lines and the nets. 
 
During a census of stranded marine mammals from 1998 to 2001 (before most of the 
NBT ranches where established), 153 stranded animals were found along 30 km of coast 
around Todos Santos Bay. Most of them (76%) were California sea lions (Zalophus 
californianus) (Bravo et al. 2005). Bravo et al. (2005) also reported a strong seasonality of 
stranded marine mammals during their beach monitoring from 1999 to 2001. The 
majority of strandings (81%) occurred during winter and spring and consisted mainly of 
adult male sea lions. It is important to point out that most ranches do not have NBT in 
their cages during this time of the year (winter to spring). Zalophus californianus was the 
species that was most impacted by humans, caused mainly by shootings. Probable 
human-induced injuries were observed in 17% (26) of all animals. Most of these were Z. 
californianus (24), probably due to their known interaction with fisheries. On average, 
there are 40 strandings of marine mammals/year; however, the number of beached 
marine mammals was 2-4 times higher during an El Niño year (1998), or during the 
presence of the 2002 red tides, which are natural events in the region (Herrera 2002).  
 
Impacts on Sea Birds 
 
Similar to the case of sea lions, marine birds (mainly seagulls and pelicans) can be a 
nuisance to tuna ranching. Birds interfere during the feeding of tuna, stealing the 
sardines before they reach the NBT. Marine birds are also protected species; therefore, 
ranches, cannot use methods that would hurt or kill sea birds. During feeding, ranchers 
use non-lethal methods (a whip, or throw a plastic ball attached to a string for easy 
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recovery) to scare the bird. So far, we are not aware of complaints against NBT ranchers 
for harming sea birds but, as far as we know, there have been no studies that would 
determine the effect of NBT ranchers on neighboring sea bird colonies or vice-versa. 
Observations by our team show clear evidence of large sea bird colonies on the 
shorelines in bays having NBT ranches. 
 
Health issues 
 
Transmission of harmful diseases and parasites from marine aquaculture facilities to 
wild stocks is a risk identified in marine aquaculture assessments (Anonymous 2007). 
Parasites are a regular issue for any food-related resource. They commonly use 
predator-prey links in trophic food webs to find appropriate hosts. Due to their complex 
lifecycles, macroparasites acquired through trophic interactions reflect the diet and the 
habitats of their hosts. Due to its diet, Pacific sardines are an easy target for several 
parasites, because the majority of parasites use as their first hosts small crustaceans such 
as copepods and euphasids, which sardines feed upon. Macroparasites can be located in 
the sardine body cavity, muscle, intestinal tract, stomach, and gills (Kunnenkeri 1962; 
Sánchez-Serrano 2005). Some could represent a risk for the tuna or even for the humans 
that consume them (Sánchez-Serrano 2005; Janine Caira, personal communication). 
 
Sánchez-Serrano (2005) studied the parasite composition in sardines caught off 
Ensenada in order to evaluate potential risks for CBTA. He found three genera of 
trematodes present: Myosaccium, Parahemiurus, and Bucephalus; two genera of nematods: 
Anisakis and Hysterothylacium; and two cestodes of the family Tetraphyllidea. Each of the 
parasites showed preferences for their location in the host. Nematods were located in the 
body cavity, adult trematods in the stomach, their metacercairae in the fin rays, while 
cestods where located in the sardine mid-intestine. Of these, the metarcercairae of 
Bucephalus sp. represented a potential risk for bluefin tuna, while the Anisakis sp. and 
Hysterothylacium sp. could also represent a potential risk to humans. Sánchez-Serrano 
(2005) also studied the minimal lethal temperature for these parasites, concluding that 
all parasites died after being at -20◦C for 24 hours. 
 
During the past 10 years there has been an increased awareness that viral hemorrhagic 
septicemia virus (VHSV) is present in many marine fish populations of the North Pacific 
Ocean and other regions. The interest in marine reservoirs for VHSV in North America 
began in 1988 with the first observations of the virus among returning adult salmon in 
the Pacific Northwest (Hedrick et al. 2003). The virus has been labeled as a cause for 
mass mortalities for several species. In order to understand the prevalence of infection 
with VHSV in the northeastern Pacific Ocean, Hedrick et al. (2003) isolated VHSV from 
Pacific sardine, Pacific mackerel Scomber japonicus, and smelt Thaleichthys pacificus 
populations from several locations between the coast of Vancouver Island, Canada, and 
southern California, USA. The prevalence of VHSV among groups of apparently healthy 
sardines, mackerels and smelts ranged from 4 to 8% in California and Oregon. A greater 
prevalence of infection (58%) occurred in groups of sardines sampled in Canada that 
sustained a naturally occurring epidemic during 1998-99. They mention that naturally 
occurring epidemics due to VHSV in marine fish most likely result from several 
environmental, nutritional and other stressors that predispose a large native population 
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to infection from carrier fish. The spread of the virus either rapidly or slowly through 
the population may result in either mass mortality or a slow, chronic course of infection. 
In the case of sardines, they could not detect the origin of the virus, although they 
suspect that it is spread between populations during north-south migrations. Also, their 
results suggest that the presence of VHSV in sardines and mackerels in California may 
represent the most southerly distribution expected, since water temperatures increase 
significantly further south. However, until now there has been no analysis of VHSV in 
Pacific sardine populations from Mexican waters. 
 
Social-Economic Status of CBTA in Mexico 
 
Industry structure 
 
CBTA in Mexico is not a vertically integrated industry; today, only one company is fully 
integrated. Ranchers hire boats to catch and transport wild fish; hire sardine boats to get 
the food; and hire boats to transport workers. Some ranchers also contract out the 
processing of their fish. Since Mexico has a moratorium on increasing fishing efforts in 
sardine and tuna fisheries (Norma Oficial Mexicana 003-PESC-1993 and Carta Nacional 
Pesquera, Diario Oficial, 2nd edition, August 25, 2006), all concessions given so far 
provide only the right to ranch tuna, not to capture wild tuna. The majority of ranches 
have contract with tuna and sardine boats having existing fishing rights to obtain 
juvenile NBT. For an industry with a high level of risk, contracting is the best option.  
 
Economic impacts 
 
The ranched NBT is a very valuable fish, and there is an accelerating demand for it. In 
2005, Japan imported ~15,000 metric tons (MT) of ranched tuna for sashimi; ~4,500 MT 
was from Mexico (Jerónimo Ramos, personal communication). It is estimated that tuna 
ranching is worth ~US$ 75-100 million/year, most of which is spent as operational costs 
(Del Moral-Simanek and Vaca-Rodríguez, in review; Jerónimo Ramos, personal 
communication). Also, it is estimated that the NBT ranching industry in Mexico 
generates ~1,000-1,500 direct  jobs, depending on the catch volume and fish price (Del 
Moral-Simanek and Vaca-Rodríguez, in review; Jerónimo Ramos, personal 
communication). These jobs are classified in Mexico as administrative and production 
positions. Administrative jobs range from high-ranking administrative positions 
(directors, managers, accountants, scientists) to office people (secretaries, drivers, 
security personnel, and others). Similarly, production positions include highly qualified 
personal (boat captains, crew, divers, maintenance, etc.). The CBTA industry also 
generates ~100 other direct jobs in supply companies such as frozen sardine processing, 
ice production, freezing, and cold storage facilities.  
   
According to the Mexican Mariculture Association, the total fleet that participates in the 
CBTA in Mexico is ~15 tuna purse seiners, ~50 towing boats, and ~10 sardine boats 
(Jerónimo Ramos, personal communication). These boats are serviced at the Ensenada 
and El Sauzal harbors.  In spite of the fact that ~15 tuna boats catch NBT, their average 
total catch per season (~4,000 MT) is small, equivalent to the average annual catch of one 
yellowfin tuna boat. 
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It has been estimated that the industry generates ~2,500 to 3,500 indirect jobs (Lamas 
Lorena, lunes 24 de Septiembre; El Vigía newspaper: 
http://elvigia.net/noticias/?seccion=generales&id=38322&como=pordia). Several other 
companies (including government agencies) benefit from CBTA and have increased 
incomes from the hiring of mechanics, refrigeration businesses, custom agencies, 
hardware and fishing gear stores, dive shops, gas stations, etc.  (Del Moral-Simanek and 
Vaca-Rodríguez, in review).  
 
The purse seine fishery targeting NBT for CBTA does not necessarily generate new jobs 
but re-directs those resources that would otherwise be absorbed in the yellowfin and 
skipjack tuna fleets throughout the Eastern Pacific Ocean, unloading their products in 
Mazatlan and Manzanillo. Now these boats fishing NBT for CBTA base their operations 
in Ensenada, creating new jobs in this region during the NBT season. Similarly, sardine 
boats bring their catch to the CBTA ranches rather than to processing plants for 
fishmeal. In both cases, more income is generated by the same amount of fish. Tuna 
boats get three times more money for their NBT by selling it to tuna ranches (~US$ 
3,000/MT) than selling it for canning (~US$ 1,000/MT). Fresh and frozen sardines are 
sold to NBT ranches for ~US$ 100-120/MT (fresh) and ~US$ 200 MT (frozen), 
respectively (depending on supply), while the price of sardines sold to processing plants 
is only US $80/MT (Del Moral-Simanek and Vaca-Rodríguez, in review).  
 
Added value 
 
In practical terms, CBTA is adding value to a fish that has already been caught. Ranched 
tuna was sold for ~US$ 17± 2/kg in 2006, which means that the added value for ranched 
tuna increased from ~US$ 6/kg (when caught for canning) to ~US$ 17/kg in Mexico. 
Once the product reaches Japan, most of the Mexican NBT is sold directly to wholesalers 
(ASEAN 2006). In Japan, NBT in supermarkets is sold for ~US$ 160-200/kg, and in 
restaurants at US$ 380-400/kg.  In Mexico, NBT is sold at restaurants for ~US$ 240/kg 
(Del Moral-Simanek and Vaca-Rodríguez, in review). These prices explain the enormous 
interest in this industry. Considering final prices of NBT in Mexico (~US$17/kg), and an 
average for Japanese supermarket and restaurant prices (~US$ 280/kg), it is estimated 
that Mexico obtains only ~6% of the total final sale price of this product, and Japan 94% 
(Del Moral-Simanek and Vaca-Rodríguez, in review).  
 
Economic risks 
 
Besides the good management skills any business must have, and assuming that the 
market conditions are adequate for supporting this business, CBTA is exposed to 
uncontrollable natural factors (red tides, storms, etc.) that may affect its success 
(Orellana-Cepeda et al. 2002; Parlange-Lamshing 2006). From the beginning of the 
process to the sale of the tunas, many factors must be overcome to make CBTA 
successful. Initially, the major constraint is the fact that ranchers depend on catching 
tuna during their migration off Mexican coasts from May to September. If they are not 
successful in capturing NBT, the season is lost, and a company could lose the year’s 
investments, with no chance to recover until the following season.  If they succeed in 
catching juvenile NBT and are able to transport it to the CBTA ranches with relatively 
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low mortalities, the next major challenge is to supply enough sardines to feed the 
animals. Ideally, ranchers seek fresh sardines. Although the Pacific waters of Mexico are 
recognized for their abundance of small pelagics (Chapter 3), these are not always 
available on a daily basis to feed NBT. A second alternative is to provide frozen sardines 
from the same region or from different locations. Sardine availabilities affect prices. 
 
If ranchers succeed in catching NBT and are able to provide sardines to feed them, they 
are still exposed to two major natural factors; the presence of red tides (usually at the 
beginning of the fattening season) that may kill the NBT, and winter storms (usually 
towards the end of the season) that may destroy the cages. Because red tides and winter 
storms cannot be controlled, the only measure that can be taken is to be prepared for 
them. In the case of red tides, there is a monitoring program that alerts the ranchers and 
gives them the opportunity to temporarily move their cages offshore. In order to avoid 
damages from winter storms, ranchers must decide in advance the best site selection 
that would provide protection and good anchorage, as well as having good cage design. 
In any case, to protect from red tides or storms means significant increases in investment 
and operational costs.    
 
Working Conditions 
 
Working conditions and wages are similar to other manufacturing industries in the Baja 
California region. Every CBTA worker gets a temporary or permanent contract. All 
workers enjoy the benefits established in the Mexican Labor Law which include 
contributions by the workers, the companies, and the federal government:  
 
1.   Medical coverage for workers and their families (Instituto Mexicano del Seguro 

Social, http://www.boletin-infomail.com/leyes_isr_imss_lft_sar/index.html);  
2. Retirement (Sistema de Ahorro para el Retiro, http://www.boletin-

infomail.com/leyes_isr_imss_lft_sar/index.html);  
3.  Housing subsidies (Instituto del Fondo Nacional de la Vivienda para los 

Trabajadores, http://www.boletin-infomail.com/leyes_isr_imss_lft_sar/index.html); 
4.     Vacations (from 1-2 weeks), including 2 extra weeks of salary paid at the end of the 

year, and 10% of the company’s net annual income divided among the 
employees, http://www.boletin-infomail.com/leyes_isr_imss_lft_sar/index.html; 

5.      Training, uniforms, equipment and tools for their work.  
 
The minimum wage in Baja California is 50.57 MX pesos/day 
(http://www.sat.gob.mx/sitio_internet/asistencia_contribuyente/informacion_frecuen
te/salarios_minimos/) (US$ 4.60/day or ~US$ 138/month). The average unskilled 
employee working for a Mexican NBT ranch earns ~US$ 327-409/month and skilled 
workers and employees with university degrees earn above US$ 750/month plus 
benefits. To date, there are no unions for NBT ranch workers. 
 
Community receptiveness  
 
The tuna industry in Ensenada started in 1930 (Beltran et. al. 2001). For decades fishing 
was one of the most important industries in the region and made the State of Baja 
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California the number one producer of fish and seafood in Mexico. Although the fishing 
industry has declined, Baja California remains one of the top three states in the nation in 
marine fish production. Baja California was also a pioneer in developing mariculture. 
Oyster cultivation was introduced and has been practiced commercially since the mid-
seventies. Besides oysters, today mussels and abalone are cultivated commercially. 
Other species of clams and fish are being studied for commercial cultivation. This 
development has been promoted, in part, due to the fact that Ensenada has a relatively 
large community of marine scientists, and many of them are devoted to the study of 
aquaculture.  These facts make this region relatively receptive to fishing and 
aquaculture.  Presently, the new State government of Baja California is in the process of 
establishing a Ministry for Fisheries and Aquaculture for the State. It would become the 
second state in the country, after the State of Baja California Sur to have a Ministry for 
Fisheries and Aquaculture. 
 
Conflicts with other industries 
 
NBT ranches require convenient sites which often shared with other industries, 
activities, or interests. Most of the ranches in Mexico are located north or south of Todos 
Santos Bay where the city and harbor of Ensenada are located (see map, Chapter 1). 
Today, all ranches are in areas with good marine water qualities, but many of the CBTA 
sites are threatened by industries nearby that could potentially affect them. Presently, 
the installation of a liquid gas terminal, 3 km north of Salsipuedes Bay (where 3 NBT 
ranches are located), the dredging of Ensenada Harbor, and future plans to expand the 
El Sauzal Harbor (15 km south of Salsipuedes Bay) are potential threats to the CBTA 
ranching industry.     

The coast where CBTA are located is an area rich in commercially important benthic 
species such as sea urchins, sea cucumbers and lobsters, among other commercially 
valuable species. Some conflicts have arisen between sea urchin fisherman and NBT 
ranchers over the issue of wastes produced from the CBTA ranches that reach the 
bottom and could deteriorate the benthic environment. The conflict was resolved by the 
ranchers’ commitment to keep the cages anchored in depths beyond the depth ranges of 
the urchin divers (>25 m).   
 
There is a conflict of interest between the CBTA ranchers and the sardine boat owners. 
Sardine boat owners do not want the NBT ranchers to have their own sardine boats, 
arguing that they may lose control of production and prices. Another issue is the 
competition between the NBT ranchers and the sardine processing plant owners for the 
sardine supply. The CBTA ranches pay higher prices for fresh sardines than the frozen 
sardine packing and fishmeal/oil reduction industries.  The Association of the Small 
Pelagic Fleet has requested that no more CBTA permits of concessions be issued in order 
to maintain the sardine stocks. They recognize that the sardine fisherman benefit from 
higher prices the CBTA ranchers pay compared to the fishmeal industry (Pringle, El 
Mexicano newspaper, 1 de Octubre de 2007). 
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Governance: National Regulations 
 
CBTA is a relatively new activity in Mexico. It started first as an experiment in 1996 and 
failed after three years of operation (see Chapter 1). The first company to still be in 
operation started in 1997. Mexican law defines a difference between “permits” and 
“concessions”. Permits are short-term (up to five years) and can be renewed. 
Concessions are long-term (up to 50 years). Two pioneering companies were granted 
concessions that were defined by area, not by the number of cages. As the industry 
developed, new companies requested concessions, and the government developed terms 
for a standard concession. Today, the standard concession allows a maximum of 10 
cages with 40 MT of tuna each (400 MT total). However, concessions for the two 
pioneering companies are still defined by area, and, over time these companies have 
deployed more than 10 cages in their areas. 
 
Fisheries and aquaculture in Mexico are regulated under the General Law for 
Sustainable Fisheries and Aquaculture (Ley General de Pesca y Acualcultura 
Sustentable) by the National Fisheries and Aquaculture Commission (Comision 
Nacional de Pesca y Acuacultura, CONAPESCA), which is within Ministry of 
Agriculture, Cattle, Rural Development, Fisheries and Feeding (Secretaría de 
Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentación, SAGARPA). On July 
24, 2007 a new Fisheries and Aquaculture law was passed by the Mexican government.  
Although this new law provides certain rights to the states to regulate some local 
fisheries, it does not include large or small pelagics. Therefore, all issues dealing with 
the management of CBTA are under the jurisdiction of the Federal Government through 
CONAPESCA. Relevant statutes are detailed in Table 3. Other laws protect the marine 
environment and wildlife (marine mammals, birds, etc.) from being harmed or harassed 
by NBT ranchers. 
 
Concessions given by CONAPESCA for CBTA have well defined requirements.  If the 
CBTA ranches do not comply with these, they could lose concessions without any 
compensation. In order to have a lease for CBTA, the CONAPESCA requirements are: 
CONAPESCA-01-027 application; applicant’s (company’s) legal documentation; 
economic and technical study; environmental impact assessment; invoices, contracts or 
acquisition program of the equipment needed for development; geographic location; 
and payment of a tariff 
(http://www.conapesca.sagarpa.gob.mx/wb/cona/cona_requisitosa). 
 
Regulations on CBTA in Mexico have been changing as the industry has developed 
(Table 3). Initial concessions had fewer restrictions than the newer ones. CBTA ranchers 
have created a chapter within the National Chamber of Fisheries and Aquaculture 
(CANAINPESCA). In the Carta Nacional Pesquera (CONAPESCA 
http://www.sagarpa.gob.mx/conapesca/ordenamiento/carta_nacional_pesquera/cnp.
htm, published on August 25, 2006), a recommendation was made regarding the 
possibility of separating the administration of the NBT from the yellowfin tuna fisheries 
due to the fact that the former is being used almost exclusively by the CBTA ranchers.  
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International affairs 
 
The fact that CBTA is based on a pelagic species and that the NBT ranched in Mexico is 
practically all exported to foreign countries makes this industry subject to external 
regulations and pressures. Catches of NBT by Mexico are made within its EEZ (Perez 
2005; Fleischer et al. 2006; Dreyfus et al. 2007). No other country fishes in this area. 
Mexico is a member of the Inter-American Tropical Tuna Commission (IATTC), which 
establishes seasonal limits and closures for tuna capture fisheries. In the Eastern Pacific 
Ocean (EPO) there is a limit on fleet capacity, and other restrictions have been 
established by IATTC and FAO, such as international trade, observers, etc. In the past, 
there was a limit on total catches. However, for the last 4 years, instead of a quota on the 
total catch, a closed season of 41 days was implemented under the recommendation of 
IATTC who proposed a closed season for 41 days to be applied in any of two periods in 
a year (www.iattc.org). Mexico applies its closed season in winter. Although this ban is 
applied in Mexico for all of the purse-seiner tuna fleet, it has no effect on the NBT fishing 
because the capture of NBT is limited from May-June to mid-August when the fish are 
within the Mexican waters. In other words, the NBT fishing in Mexico is auto-regulated 
by the period of availability near the Mexican coast during its migration (see Chapter 2). 
 
NBT fisheries are not completely within the IATTC jurisdiction but are also managed by 
the International Scientific Committee for tuna and tuna-like species of the North Pacific 
(ISC). The ISC (http://isc.ac.affrc.go.jp/), of which Mexico is a member, was established 
in 1995 for the purpose of enhancing scientific research and cooperation for the 
conservation and rational utilization of tuna and tuna-like species (TTLS) of the North 
Pacific Ocean (NPO), and to establish the scientific groundwork if, at some point in the 
future, it was decided to create a multilateral regime for the conservation and rational 
utilization of the TTLS in the NPO.  
 
The ISC functions are to assess and analyze fisheries and other relevant information 
concerning the species covered and prepare reports of its findings or conclusions on the 
status of the species, including trends in population abundance, developments in 
fisheries, and conservation needs. ISC promotes research cooperation and collaboration 
among its members by developing proposals for the conduct and coordination of 
international and national programs. The members of the ISC are: Canada, Chinese 
Taiwan, Japan, Republic of Korea, Mexico, People's Republic of China and the United 
States of America. There are also observers such as the IATTC, FAO, North Pacific 
Marine Science Organization (PICES), Secretariat of the Pacific Community (SPC), and 
the Commission for the Conservation and Management of Highly Migratory Fish Stocks 
in the Western and Central Pacific Ocean.  
 
Ecological Aquaculture Approach to CBTA 
 
One goal for sustainable aquaculture is to ensure that commercial aquaculture has 
minimal adverse effects on the environment. One way of achieving this goal is through 
development of improved methods of waste management for open water based or 
coastal/offshore aquaculture. Seaweeds take up nitrogen and phosphorus, which are 
used for growth and production of proteins, structural components, and energy storage 
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products. In a balanced Integrated Multi-Trophic Aquaculture (IMTA) system, nutrients 
are removed when multiple products (fish, invertebrates, seaweeds, shellfish, etc.) are 
harvested, thus reducing solid and soluble nutrient loadings to the marine environment. 
The fact that up to 92% of excretion of tuna is soluble (Fernandes 2007a,b,c), makes 
CBTA ideal for integrated aquaculture. In IMTA systems, coastal or offshore, seaweeds 
can be used as extractive components to remove nutrients, mitigate adverse 
environmental impacts, and provide economic diversification (Chopin et al. 2001; Neori 
et al. 2004; Neori et al. 2007).  
 
On a global basis, seaweed aquaculture is a multi-billion dollar industry representing 
27% of world marine aquaculture production on a weight basis and 24% on a monetary 
basis (FAO 2006). Nearly, all seaweed aquaculture occurs in China, Korea, Japan and 
Chile. North America has very few seaweed aquaculture operations. The most notable is 
the Acadian Sea Farms in Charlesville, Nova Scotia, Canada, producing the red seaweed 
Chondrus crispus for export to the Japanese food market (Craigie et al. 1999). The primary 
commercial use of seaweed is for human consumption, but it is also used as a source of 
colloids for the food and cosmetic industry, as a source of pharmaceuticals, as a 
supplement in livestock feed, and as a soil amendment in agriculture (Sahoo and Yarish 
2005). In Baja California, Mexico it has been used as a food source for abalone and is 
currently being investigated as a replacement for fishmeal in finfish diets. In the 1980s, 
there was significant interest in seaweeds as a biomass source for methane production 
(Flowers and Bird 1984), and there is current renewed interest in seaweed as a biofuel 
source for ethanol and methane gas production. Seaweeds have also been cultivated for 
habitat restoration (Carney et al. 2005) and have been proposed as large-scale carbon 
sinks, as a method of removing heavy metals from marine environments, and even as a 
way to detoxify and remove TNT from seawater (Cruz-Uribe et al. 2007). 
 
Seaweeds have been successfully incorporated into a number of demonstration and pilot 
scale IMTA systems. Nutrient loads in the effluent were significantly reduced and 
converted to abalone biomass (Troell et al. 2006). In projects supported by the National, 
Connecticut, Maine and New Hampshire Sea Grant programs (Sahoo and Yarish 2005; 
Carmona et al. 2006; He and Yarish 2006; Blouin et al. 2007), a demonstration-scale land-
based IMTA was developed to grow Atlantic cod (Gadus morhua) and two native species 
of the red seaweed Porphyra (=nori). A pilot-scale coastal IMTA project in New 
Brunswick, Canada uses kelp (Saccharina latissima and Alaria esculenta) and mussels 
(Mytilus edulis) as the extractive components in close proximity to salmon (Salmo salar) 
cages (Chopin et al. 2007). In Portugal, Matos et al. (2006) demonstrated the effectiveness 
of three red seaweeds, Palmaria palmata, Gracilaria bursa pastoris and Chondrus crispus in 
removing nutrients from the effluent of tank-based production of turbot (Scophthalmus 
maximus) and sea bass (Dicentrarchus labrax). In Israel, Neori et al. (2003, 2004, 2007) 
developed a commercial-scale IMTA system incorporating gilthead seabream (Sparus 
aurata), the green seaweed Ulva lactuca, abalone and sea urchins. In South Africa, kelp 
(Ecklonia maxima) grown in the effluent of abalone aquaculture tanks was fed back to the 
abalone to reduce the footprint of finfish and abalone production as well as to create 
economic diversification (Troell et al. 2006).  
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Final Remarks 
 
CBTA in Mexico has provided a significant economic benefit to the region of Ensenada 
without significant environmental impacts on the environment. Operational practices to 
“fit” tuna ranching into the marine environment and to accommodate enhanced marine 
mammal and bird populations appear successful at the level of current production and 
regulatory systems. However, although governance has improved, there are concerns 
about the future expansion of tuna ranching, and there is not enough practical 
information at the commercial scale to provide guidance for the next generation of 
advanced systems incorporating IMTA and socio-ecological approaches, as recently 
adopted by the FAO (Costa-Pierce 2007). It is urgent to strengthen applied, cooperative 
(government, industry, universities and NGOs) monitoring and research programs in 
order to assure more sustainable CBTA. The relative success that CBTA has had in 
Ensenada suggests that the Pacific coast of Baja California is particularly suitable for 
highly profitable marine aquaculture, especially the cultivation of marine finfish. Baja 
California’s internationally known marine science institutions, highly productive waters, 
local infrastructure, and closeness to international markets make this region particularly 
attractive for marine aquaculture. It is apparent that in the near future there will be 
many requests for the establishment of commercial aquaculture projects and enterprises. 
Presently, there is insufficient information for the comprehensive planning needed to 
assure an orderly sustainable development of aquaculture.  
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Table 1. List of parameters required to be reported by the CBTA farmers to the 
Mexican Navy. 

 
Variables Water Frequencies # of 

stations/# 
of depths 

Sediment Frequencies # of 
stations1 

NO3 X monthly 2/3    
NO2 X monthly 2/3    
NH4 X monthly 2/3    
PO4 X monthly 2/3    
*BOD X monthly 2/3 X 6 months 2 
**COD X monthly 2/3 X 6 months 2 
***TSS  X monthly 2/3 X 6 months 2 
Sulfides    X 6 months 2 
Cyanide    X 6 months 2 
Total N    X 6 months 2 
%Org. 
Matter 

   X 6 months 2 

1One station is located within the pen and a second at 400 m; * BOD: Biochemical 
Oxygen Demand; ** COD: Chemical Oxygen Demand; ***Total Suspended Solids 
including organic and inorganic fractions. 
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Table 2. Nutrient baseline data for the Ensenada, Mexico region. 

 
Sites NO3 

 (µM) 
NH4 
(µM) 

PO4  
(µM) 

References Notes 

Todos 
Santos Bay 

 
10.0 (50 
m) 
2.0 (0 m) 

 
- 

 
1.3 
(50m) 

Espinosa-Carreón 
T.L. et al. 2001. 
Cien. Mar. 27: 397-
422. 

Average max 
concentration from 5 
cruises in 1994. 
Samples from surface 
to 50 m 

Todos 
Santos Bay 

 
8.9 

 
- 

 
0.5 

Millán-Nunez & 
Rivas-Lozano. 
1988. Cien. Mar. 
14:23-42 

Maximum values. 
Data from May 1983. 
Nitrogen is NO3+NO2 

Outside 
Todos 
Santos Bay  

 
10 

 
- 

 
1.0 

González-Morales 
et al. 1993. Estuar. 
Coast. Shelf Sci. 
36:147-158. 

Maximum surface 
values 

Estero de 
Punta 
Lagoon 

 
10 

 
27 

 
7 

Soto-Balderas & 
Alvarez-Borrego. 
1991. Cien. Mar. 17: 
1-20 

Maximum values. 
Data from May 1983. 
Nitrogen is NO3+NO2 

Estero de 
Punta 
Lagoon 

 
6.8 

 
- 

 
3.5 

Galindo-Bect et al. 
1999. Cien. Mar. 
25:225-237. 

Data 1992-93 
Nitrogen is NO3+NO2 
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Table 3. General Law for Sustainable Fisheries and Aquaculture (Ley General de 

Pesca y Acuacultura Sustentable) published on July 24, 2007 
 
Revelant Aquaculture Regulations Descriptions 
Article 4 Defines aquaculture 
Article 40 to 59 Defines leases 
Article 78 to 82 Defines development plans 
Article 85 to 88 Defines management 
Article 89 to 102 Administration 
Article 103 to 108 Sanitation 
Article 109 to 117 Sanitary control 
Article 118 to 119 Product quality 
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Figure 1. Water quality monitoring conducted by the Universidad Autonoma de Baja 
California (UABC). 
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Figure 2. Sea lion resting on an unprotected tuna cage. 
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Figure 3. Cage with a net and electric wire to prevent the intrusion of sea lions. 
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Chapter 5 
 

Knowledge Gaps and Recommendations for the Future 
 
Baja California is one of the most arid states of Mexico with ~700 km of coastline on each 
coast that has few commercial activities other than limited, dry land agriculture and 
tourism. Although Baja California remains among the three main fishing states in 
Mexico, practically all wild fisheries are exploited at maximum capacity. Aquaculture 
activities have been seen as a “natural” activity to provide sustainable livelihoods to 
coastal communities. The State of Baja California is a pioneer in Mexico in the 
development of commercial aquaculture of oysters, mussels, abalone, seaweeds, and 
marine fish. Aquaculture is considered as one of the main opportunities for the State 
along with tourism and fishing (commercial and recreational). If well planned and 
practiced, aquaculture could also be an activity that could permit the conservation of the 
natural environment. The west coast of Baja California is presently a relatively pristine 
environment with enormous pressures for development. Due to Baja’s strategic position 
having good access to transportation networks, international markets, and suitable 
environments, aquaculture has been aggressively promoted by Mexico’s state and 
federal governments. In order to develop a model industry in terms of sustainability, it 
is imperative that the necessary information be provided to coastal managers, decision-
makers and business entrepreneurs that would guarantee minimal impacts on the 
environment. At this point, we believe that CBTA, as currently permitted, has had a 
positive impact on the social fabric of Baja California’s coastal communities. If properly 
integrated and redesigned ecologically to incorporate integrated multi-trophic 
aquaculture (IMTA) systems, CBTA would have minimal impacts on the environment.  
However, the main challenge is to enforce and improve on the existing regulatory 
structure to control any further expansion of CBTA and to insure its long term economic, 
social, and environmental sustainability. 
 

Knowledge Gaps and Recommendations 
 
1. There are no studies on the impacts to eutrophic oceans with frequent upwellings 
(producing high background levels of nutrients) where these marine ecosystems also 
receive large, concentrated amounts of sardine wastes and tuna feces from CBTA.  
 
Implement remediation management practices including integrated multi-trophic 
aquaculture (IMTA) and innovative coastal management plans that include 
aquaculture. 
 
2. In Baja California’s eutrophic ocean, there are no carrying capacity models 
appropriate for this marine environment that integrate hydrodynamic and 
biogeochemical parameters to establish cage limits. Baseline environmental  information 
is lacking along much of the Baja California coast. As a result, the State of Baja California 
cannot effectively deal with requests for new concessions and expansion of the industry 
in other pristine bays.   
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Estimates of the carrying capacity of impacted coastal regions will be required to 
properly determine the maximum number of cages and stocking densities of tuna for 
ranches and to minimize the risk of environmental pollution and maximize the 
production of healthy fish. Improve environmental monitoring using new technologies 
(including DNA assays, environmental sensors, probes and remotely operated buoys) in 
designated ranch areas that will be able to provide real time data acquisition and 
analysis to minimize environmental impacts. New technologies will also be needed to 
better monitor the impacts on benthic communities and to develop trained specialists to 
assist with this work.  
 
3. There are enhancements (and/or new production) of wild fish, marine mammals, sea 
birds, and other marine life in and around the CBTA sites that are not well understood.  
 
Conduct population studies on marine mammals, sea birds, wild fish, and other marine 
life in CBTA regions. 
 
Conduct studies on the impacts of large amounts of wastes from wild marine fish, sea 
birds and marine mammals being added to the marine environment due to CBTA. 
 
4. There are no studies on the use of alternative (and more abundant) pelagic fish species 
as feedstocks for CBTA. 
 
Investigate the use of other small pelagic fish species to feed tuna, for example, chum 
mackerel, and encourage the development of economically and ecologically viable 
formulated diets for NBT in the cages. 
 
5. There are no internationally agreed upon guidelines for best practices for all stages of 
the ranching process that could be more economically, socially and environmentally 
responsible. 
 
Work internationally to develop guidelines and best practices for all stages of CBTA. 
 
6. There is little research on the transmission of viruses and other diseases from sardine 
feedstocks to tuna. 
 
Investigate health issues, such as the VHS virus in Pacific sardines, e.g. its role in 
decreasing the quality of sardines as tuna feed, and its risks to the marine ecosystem. 
 
Increase the level of biosecurity on CBTA farms. Prohibit the uncontrolled movements 
of  untreated sardines from separate sardine stocks in the USA, Gulf of California, and 
southern Mexican sardine stocks and others arriving internationally for use in the 
CBTA in northern Baja California ranch sites. 
 
7. The stock status and size of a potential sustainable fishery for adult sardines that are 
present offshore of northern Baja California is unknown. 
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Encourage the existing sardine fleets to protect current stocks and to develop a new, 
experimental trawl fishery targeting larger sardines offshore in the northern Baja region 
to meet the existing and future demands of CBTA in this bioregion. 
 
8.  Closed cycle aquaculture for NBT is neither scientifically nor economically viable at 
the present time in Mexico. 
 
Develop a commercial scale research and development farm in Baja California to 
simultaneously develop economically viable IMTA, tuna hatcheries, and feeds for closed 
cycle tuna aquaculture. 
 

General Recommendations 
 
Governance 
 
In Mexico, keep the current moratorium in place on the development of CBTA of NBT 
and sardine boats until new models of sustainability are demonstrated. 
 
In the WPO, work internationally with Asian nations (Japan, Philippines, Indonesia, 
Taiwan, etc.) to evaluate the closure of NBT spawning and nursery areas south of 
Okinawa and elsewhere in the WPO to commercial fishing. 
 
In the EPO, reserve the NBT quota for CBTA and other valued added products. 
 
Institution and Capacity-Building 

 
In order to become a more environmentally and socially sustainable practice in Mexico, 
CBTA needs a Center of Excellence in research/education/outreach and extension that 
would be a university, government, and industry partnership.  
 
The industry has broad and frequent global communications and a solid network of 
contacts between the major CBTA centers in Australia, Japan, the Mediterranean and 
Mexico, but scientists, policy-makers and extension specialists are poorly organized 
and scattered. Such local institution-building would need to be closely connected to 
international institutions in order to develop trust and a sustainable funding base. Such 
a Center would need to be a long-term investment. Encourage Japan to actively work 
with this Mexican Center of Excellence to maintain robust stocks of NBT in the WPO 
and EPO.  
 
Develop an innovative, collaborative (government, industry, university, NGO) marine 
Center of Excellence in Mexico as a research and training center to develop new models 
of sustainable aquaculture (IMTA).  
 
Study the innovative model developed in Australia, the South Australian Research and 
Development Institute (SARDI). 
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