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Due to diminishing petroleum reserves and deleterious environmental consequences of exhaust gases
from fossil-based fuels, research on renewable and environment friendly fuels has received a lot of
impetus in the recent years. However, the availability of the non-edible crops serve as the sources for
biofuel production are limited and economically not feasible. Algae are a promising alternative source to
the conventional feedstocks for the third generation biofuel production. There has been a considerable
discussion in the recent years about the potential of microalgae for the production of biofuels, but there
may be other more readily exploitable commercial opportunities for macroalgae and microalgae. This
review, briefly describes the biofuels conversion technologies for both macroalgae and microalgae. The
gasification process produces combustible gases such as H2, CH4, CO2 and ammonia, whereas, the pro-
duct of pyrolysis is bio-oil. The fermentation product of algae is ethanol, that can be used as a direct fuel
or as a gasohol. Hydrogen can be obtained from the photobiological process of algal biomass. In trans-
esterification process, algae oil is converted into biodiesel, which is quite similar to those of conventional
diesel and it can be blended with the petroleum diesel. This study, also reviewed the production of high
value byproducts from macroalgae and microalgae and their commercial applications. Algae as a
potential renewable resource is not only used for biofuels but also for human health, animal and aquatic
nutrition, environmental applications such as CO2 mitigation, wastewater treatment, biofertilizer, high-
value compounds, synthesis of pigments and stable isotope biochemicals. This review is mainly an
attempt, to investigate the biorefinery concept applied on the algal technology, for the synthesis of novel
bioproducts to improve the algal biofuels as even more diversified and economically competitive.

The employment of a high-value, co-product strategy through the integrated biorefinery approach is
expected to significantly enhance the overall commercial implementation of the biofuel from the algal
technology.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Biofuels scenario

In this twenty first century, a major research emphasis is given
to the development of petroleum, coal and natural gas based
refinery to exploit the less expensive fossil feedstocks. These
feedstocks are used in industry to produce multiple products such
as fuel, fine chemicals, pharmaceuticals, detergents, synthetic
fiber, plastics, pesticides, fertilizers, lubricants, solvent, waxes,
coke, asphalt, etc. to meet the growing demand of the population
[1,2]. Currently, the fossil resources are not regarded as sustainable
and questionable from the economic, ecology and environmental
point of views [3].

The burning of fossil fuels is a big contributor to increase the
level of CO2 in the atmosphere, which is directly associated with
the global warming observed in very recent decades [4]. The
adverse effects of greenhouse gas (GHG) emissions on the
environment, together with declining petroleum reserves, have
been realized. Therefore, the quest for sustainable and envir-
onmentally benign sources of energy for our industrial econo-
mies and consumer societies has become urgent in the recent
years [5].

In order to reduce the carbon emissions and the dwindling
reserves of crude oil, liquid fuels derived from plant material –
biofuels – are an attractive source of energy [6]. Thus, the only
possible solution to this crisis is to find a sustainable (renewable)
and economically feasible source of alternative energy [7]. There
are many alternative energy sources such as wind, solar, geother-
mal and biomass which fulfill the first criterion (sustainability).
However, a few of these can fulfill the second criterion (economic
feasibility). The best option, to fulfill both the above criteria, is
biofuel, particularly that is made from a readily available biomass
feedstock [8–10]. Biofuels are liquid or gaseous fuels for the
transport sector that are predominantly produced from a variety of
bio-feedstocks. Bio-feedstocks or biomass refers to all the vege-
table matter that can be obtained from photosynthesis. They are
renewable, sustainable, biodegradable, carbon neutral for the
whole life cycle and environmentally friendly; they encourage
green industries and agriculture and are applicable as motor fuels,
without or with slight engine modifications. The great versatility
of biomass as a feedstock is evident from the range of materials
that can be converted into various solid, liquid and gaseous fuels
using biological and thermochemical conversion processes [7].

Several biofuels, including bio-ethanol, -methanol, -diesel and
-hydrogen, appear to be attractive options for the future of
transport sector. The production of biofuels is expected to rise
steadily in the next few decades [11]. Biomass energy is the largest
renewable energy source, representing 10.4% of the world’s total
primary energy supply or 77.4% of global renewable energy supply
[12]. At present, several countries such Brazil, the United States,
Germany, Australia, Italy and Austria are already using biofuels
such as bioethanol and biodiesel. It is expected that, this trend will
continue to grow and more countries will use biofuels [13,14].
Global biofuel production has tripled from 4.8 billion gallons in
2000 to about 16 billion in 2007, but still accounts fall less than 3%
for the global transportation fuel supply, according to US Depart-
ment of Agriculture report [15].

1.2. First generation biofuels

‘First generation’ biofuels can offer some CO2 benefits and can
help to improve domestic energy security. However, a concern
exists about the sourcing of feedstocks, including the impact, it
may have on biodiversity and land use and competition with food
crops. A ‘first generation’ biofuel (i.e. biodiesel (bioesters), bioe-
thanol and biogas) is characterized either by its ability to be
blended with petroleum-based fuels, combusted in existing
internal combustion engines and distributed through existing
infrastructure, or by the use in existing alternative vehicle tech-
nology like FFVs (‘‘Flexible Fuel Vehicle’’) or natural gas vehicles
[16]. The production of first generation biofuels is commercial
today, with almost 50 billion liters produced annually. There are
also other niche biofuels, such as biogas which have been derived
by an anaerobic treatment of manure and other biomass materials.
However, the volumes of biogas used for transportation are rela-
tively smaller today [4].



T. Suganya et al. / Renewable and Sustainable Energy Reviews 55 (2016) 909–941 911
However, the first generation biofuels seems to create some
skepticism to scientists. There are concerns about environmental
impacts and carbon balances, which sets limits in the increasing
production of biofuels of first generation (Table 1). The main dis-
advantage of first generation biofuels is the food-versus-fuel dis-
pute, one of the reasons for rising food prices is due to the increase
in the production of these fuels [17]. Therefore, for the abatement
of GHG, it is recommended to have more efficient alternatives
based on both renewable and conventional technologies [18].

The sustainable and economic production of first generation
biofuels has however come under scrutiny. Their potential to meet
liquid transport fuel targets is being set by the government to help
in achieving the goals of oil-product substitution, economic
growth and climate change mitigation, which are limited by [19]:

1. Competition for land and water used for food and fiber pro-
duction [20,21];

2. High production and processing costs that often require gov-
ernment subsidies in order to compete with petroleum pro-
ducts [22];

3. Widely varying assessments of the net greenhouse gas (GHG)
reductions once land-use change is taken into account [23];

Therefore, lignocellulosic feedstock can offer the potential to
provide novel biofuels, the biofuels of the ‘second generation’ [24].

1.3. Second generation biofuels

Second generation biofuels produced from ‘plant biomass’ refer
largely to lignocellulosic materials, as these make up the majority
of the cheap and abundant nonfood materials available from
plants. However, at present, the production of such fuels is not cost
effective because there are a number of technical barriers that
need to be overcome before their potential can be realized [18].
Plant biomass represents one of the most abundant and under-
utilized biological resources on the planet and is seen as a pro-
mising source of material for fuels and raw materials. At its most
basic, plant biomass can simply be burned in order to produce
heat and electricity. However, there is a great potential in the use
of plant biomass to produce liquid biofuels. However, biofuel
production from agricultural by-products could only satisfy a
proportion of the increasing demand for liquid fuels. This has
generated a great interest in making use of dedicated biomass
crops as feedstock for biofuel production [25]. Therefore, it is
anticipated that, these second generation biofuels could sig-
nificantly reduce CO2 production, do not compete with food crops
and some types can offer better engine performance (Table 1).

When commercialized, the cost of second generation biofuels
has the potential to be more comparable with standard petrol,
diesel and would be a cost effective route to renewable, low car-
bon energy for road transport [4].

1.4. Algae: renewable feedstock for biofuels

Algae are responsible for over 50% of primary photosynthetic
productivity on earth and are budding sunlight factories for a wide
range of potentially useful products, but are rarely used for com-
mercial purposes [26–29].

Several biofuel candidates were proposed to displace fossil
fuels, in order to eliminate the vulnerability of energy sector.
Biodiesel and bioethanol produced from terrestrial plants have
attracted the attention of the world as potential substitutes. The
availability of crops that serve as source for biofuel production is
limited [30]. However, due to “food versus fuel” competition as
well as land consumption of these biofuels, they have brought
much controversy and debate on their sustainability [31].
Therefore, it is necessary to find new feedstock, suitable for
biofuel production, which does not drain the edible feedstock
supply. One alternative to the conventional crop is algae. Third
generation technology is based on algae or cyanobacteria that
contain a high oil mass fraction grown in ponds.

Biofuel production from algae is widely considered as one of
the most efficient methods. They appear to represent the recent
renewable source of biofuels that could meet the global demand
for transport fuels [32]. Algae represent an economically and
environmentally sustainable, renewable source of biomass for the
production of biofuels [33]. Algae are simple aquatic organisms
that photosynthesize, but there are an estimated approximately
300,000 species, whose diversity is much greater than that of the
land plants [6].

Algae can convert almost all of the energy in biomass residuals
and wastes to methane and hydrogen. Certain algae and cyano-
bacteria have high lipid contents [34]. Algae can be cultivated in
farms absorbing CO2 from the air. They contain oils that can be
used as raw material for biodiesel production [35]. Algae also
contain carbohydrates, which can be converted into bioethanol.
They have the advantage that, they do not conflict with food
production (Table 1). In addition, they have the potential to cover
the global demand for transportation fuels [30].

Algae’s potential as a feedstock is dramatically growing in the
biofuel market. Algae have many desirable attributes as energy
producers [36–38]:

1. Algae is the most promising non-food source of biofuels,
2. Algae has a simple cellular structure,
3. Algae contain lipid-rich composition (40–80% in dry weight).

Microalgae produce 15–300 times more lipid for biodiesel
production than the traditional crops, which do on an area
basis [39]. Their lipid content could be adjusted through
changing growth medium composition [40].

4. A rapid reproduction rate and high growth rate; e.g., doubling in
24 h [41]. They could be harvested more than once in a year [42].

5. Salty or wastewater could be used [42].
6. Atmospheric carbon dioxide is the carbon source for the growth

of microalgae [42].
7. Algae biofuel contains no sulfur, is non-toxic and highly biode-

gradable [42].

From a practical point of view, they are easy to be cultivated,
can grow with slight or even no attention, using water, which is
unsuitable for human consumption and effortless to obtain
nutrient [43].

1.5. Enhancement of economic feasibility of biofuels from algae

Algae can be used as a feedstock for biofuel production and also
play a major role to control environmental pollution and provides
plenty of nutritional supplements. Potential of algae for other
purposes are as follows:

� Removal of carbon dioxide (CO2) from industrial flue gases by
algae bio-fixation [44], reducing the GHG emissions of a
company or process while producing biodiesel. High purity
CO2 gas is not required for algae culture. It is possible that flue
gas containing 2–5% CO2 can be fed directly. This will simplify
CO2 separation from flue gas significantly [45].

� Wastewater treatment by utilizing water contaminants such as
NH4

þ , NO3
� , PO4

3� can be effectively used as nutrients for
microalgae [43–45].

� Oil extracted algal biomass (after oil extraction from algal bio-
mass) can be used to produce ethanol, methane or simply
burned for energy co-generation (electricity and heat). It can



Table 1
Comparison of three-generation biofuels with petroleum products.

Petroleum products First generation Second generation Third generation

Technology Petroleum refinery Microbial fermentation, chemical and
enzymatic transesterification

Pretreatment, hydrolysis and fermentation,
transesterification

Metabolic engineering for direct synthesis,
fractionation of algal biomass

Feedstocks Crude petroleum Vegetable oils and corn sugar feedstocks Non food, cheap and abundant plant waste biomass
(Agricultural and forest residue, etc)

Algae

Products CNG,LPG, Biodiesel, corn ethanol, sugar alcohol Hydrotreating oil, bio oil, FT oil, lignocellulose ethanol,
butanol, mixed alcohols

Biodiesel, bioethanol, biohydrogen,
biomethanediesel, petrol, kerosene and jet fuel

Benefits 1. High energy density: highly compact portable source of
energy used for most forms of mechanical transportation

1. Environmental friendly
2. Economic and social security

Environmental friendlyNot competing with foodAdvance
technology still under development to reduce the cost

1. Environmental friendly
2. Not competing with food and

Agricultural land
3. Oil productivity is very high when com-

pared with all other biomass
4. Algae is the most promising non-food

source of biofuels
5. Algae has a simple cellular structure
6. Lipid-rich composition (40–80% in dry

weight)
7. A rapid reproduction rate
8. Algae can grow in salt water and harsh

conditions
9. Algae thrive on carbon dioxide from gas-

and coal-fired power plants
10. Algae biofuel contains no sulfur, is non-

toxic and highly biodegradable.
Problems 1. Depletion/

2. Declining of petroleum reserve
3. Environmental pollution
4. Economic and ecological problems

1. Limited Feedstocks
2. Food vs. fuel competition
3. Blended partially with conventional fuel

1. Agricultural land consumption
2. Complicated processes

1. Low product yield at large scale
2. Less biomass production
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also serve as a livestock feed, used as organic fertilizer due to its
high N:P ratio [43,44].

� Combined with their potential to grow under undefined con-
ditions and their limited nutritional requirement, they can be
grown in areas which are unsuitable for agricultural purposes,
independent of the seasonal weather changes, thus, not com-
peting for arable land use and make use of wastewater as the
culture medium, without the need for freshwater [43].

� Algae’s high value commercial products could offset the capital and
the operation costs of the process. Products are: (a) mineralized
carbon for stable sequestration; and (b) compounds of highly
commercial value. By selecting appropriate algae species, either
one or both can be produced. Depending on the type of algae
species, high value bio-active compounds can also be extracted,
including a large range of fine chemicals and bulk products, such as
fats, polyunsaturated fatty acids, oil, natural dyes, sugars, pigments,
antioxidants and other fine chemicals and biomass [46,47].

� Because of this variety of high-value biological derivatives, with
many possible commercial applications, algae can potentially
revolutionize a large number of biotechnology areas including
biofuels, nutrition and food additives, cosmetics, aquaculture,
pharmaceuticals and prevention of environmental pollution
[43,47].

1.5.1. Biorefinery approach: the high-value co-product strategy
The term “biorefinery” was coined to describe the production

of biofuels as well as high value co-products from biomasses by
the integration of bioprocessing and appropriate low environ-
mental impacting chemical technologies in a cost-effective and
environmentally sustainable manner [39]. Algae biorefinery
approach is represented in Fig. 1 [16].

Both macroalgae and microalgae have the capacity to produce vast
array of high-value bioactive compounds that can be used as
Bio
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Fig. 1. Biorefinery approac
pharmaceutical compounds, health foods and natural pigments [48].
Significant examples includes: Alginates, Carrageenans, Agars, Agar-
ose [49], acetylic acids, β-carotene [50,51], vitamin B [52], ketocar-
otenoid astaxanthin [53], polyunsaturated fatty acids [54] and lutein
[51,55]. The economical feasibility of algal biofuel production should
be significantly enhanced by a high-value co-product strategy. This
strategy involves sequentially, the cultivation of algae with an algal
farming facility (CO2 mitigation, wastewater treatment), extracting
bioreactive products from harvested algal biomass, thermal proces-
sing (pyrolysis, liquefaction, or gasification), extracting high-value
chemicals from the resulting liquid, vapor and/or solid phases and
reforming/ upgrading biofuels for different applications.

In the year 2010, Naik et al. [16] discussed the integral utili-
zation of these feedstocks for the production of value added che-
micals and biofuels. They also reviewed the cost reduction tech-
nologies and the processes to convert biomass into useful liquid
biofuels and bioproducts.

In accordance with the current review, Brennan and Owende
[56] premeditated the technologies underpinning microalgae-to-
biofuels systems, focusing on the biomass production, harvesting,
conversion technologies and the extraction of useful co-products.
The study also includes the synergistic coupling of microalgae
propagation with the potential for mitigation of environmental
impacts associated with energy conversion and utilization.

1.6. Algae: potential raw materials for commercial applications

Algae have a great potential to produce a wide range of
important biochemicals for food, medical research and other uses
and many exciting and important biochemicals are yet to be dis-
covered from microalgae [27,29,47,57–60]

Apart from biofuel production algae will serve as a potential
renewable source for the following commercial applications [61]: i.
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Environmental applications such as wastewater treatment and CO2

mitigation; ii. Human nutrition; iii. Animal and aquatic feed; iv.
Cosmetics product production; v. High-value molecules such as fatty
acids; vi. Pigments synthesis such as β-carotene, astaxanthin, phy-
cobiliproteins; vii. Stable isotope biochemicals; viii. Biofertilizer; ix.
Drug synthesis for antimicrobial, antiviral, antibacterial and antic-
ancer (Fig. 1).

Algae have three fundamental attributes that can be converted
into technical and commercial advantages [57]:

(1) They are genetically a very diverse group of organisms with a
wide range of physiological and biochemical characteristics;
thus they naturally produce many different and unusual fats,
sugars, bioactive compounds, etc.

(2) They can cost-effectively incorporate the stable isotopes 13C,
15N and 2H into their biomass and thus into the various
compounds they produce.

(3) They comprise a large, unexplored group of organisms and
thus provide a virtually untapped source of products.

Limited reports were established for the production of biofuels
from macroalgae and the commercial applications of both mac-
roalgae and microalgae. Therefore, this deficient endeavor is taken
as a main objective for this review.

This review focuses on possibilities of different types of biofuel
such as bio-diesel, -ethanol, -hydrogen, -methane, -propane pro-
duction from both macroalgae and microalgae and the production
technologies are briefly discussed. Furthermore, this review fur-
nishes the outline of “biorefinery concepts” to enhance the eco-
nomic feasibility of biofuels from algae combined with high value
co-product strategy. Commercial value assessment of macroalgae
and microalgae are elaborated in detail.

This discussion aims to highlight the potential of algae, both
macroalgae and microalgae for biofuel production and synthesis of
novel high value compounds in commercial echelon, so as to improve
the mortal life of algae. Therefore, in the first part, biology of algae and
biochemical composition of macro- and micro-algae are presented.
Then the conversion technologies for algal biomass into biofuels and
integrated approaches of biofuel production with environmental pol-
lution control are described in detail. Finally, commercial applications
of microalgae and macroalgae are elaborated.
2. Biology of algae

Algae are photosynthetic aquatic organisms. The term ‘‘algae’’
refers to a polyphyletic, artificial assemblage of organisms [62].
The term is often used to refer specifically to eukaryotic organisms,
thus excluding photosynthetic bacteria (such as cyanobacteria,
which are also referred to as ‘blue-green algae’). They may be
unicellular (microalgae) or multicellular (macroalgae). The latter
category includes seaweeds. The algae are very diverse in evolu-
tionary terms. With over 40,000 species already identified and
with many more yet to be identified, algae are classified in to
multiple major groupings as follows: cyanobacteria (Cyanophy-
ceae), green algae (Chlorophyceae), diatoms (Bacillariophyceae),
yellow-green algae (Xanthophyceae), golden algae (Chrysophy-
ceae), red algae (Rhodophyceae), brown algae (Phaeophyceae),
dinoflagellates (Dinophyceae) and ‘pico-plankton’ (Prasinophyceae
and Eustigmatophyceae). Algae are made up of eukaryotic cells.
These are cells with nuclei and organelles. All algae have plastids,
the bodies with chlorophyll that carry out photosynthesis. How-
ever, the various strains of algae have different combinations of
chlorophyll (chl) molecules (Table 2). Some have only chl A, some
A and B, while other strains, A, C and D [63].
2.1. Macroalgae

Macroalgae or seaweed is a macroscopic, multicellular, marine
algae that lives near the seabed (benthic) [64]. The term includes
some members of the red, brown and green algae. A seaweed may
belong to one of the several groups of multicellular algae: the red
algae, green algae and brown algae. As these three groups are not
thought to have a common multicellular ancestor, the seaweeds
are a polyphyletic group. In addition, some tuft-forming bluegreen
algae (cyanobacteria) are sometimes considered to be seaweeds.
Seaweeds' appearance resembles non-arboreal terrestrial plants.

Macroalgae contain the following parts:

� Thallus: the algal body
Lamina or Blade: a flattened structure that is somewhat leaf-
like

1. Sorus: a spore cluster
2. On Fucus, air bladder: a floatation-assisting organ on the blade
3. On kelp, float: a floatation-assisting organ between the lamina

and stipe
Stipe: a stem-like structure, may be absent
Holdfast: a specialized basal structure providing attachment to a
surface, often a rock or another alga
Haptera: a finger-like extension of the holdfast anchoring to a
benthic substrate

The stipe and blade are collectively known as the frond.
2.2. Microalgae

Microphytes or microalgae are microscopic algae, typically
found in freshwater and marine systems [6]. They are unicellular
species, which exist individually, or in chains or groups. Depend-
ing on the species, their sizes can range from a few micrometers
(mm) to a few hundreds of micrometers. Unlike higher plants,
microalgae do not have roots, stems and leaves. Microalgae, cap-
able of performing photosynthesis, are important for life on earth;
they produce approximately half of the atmospheric oxygen and
simultaneously use the greenhouse gas carbon dioxide to grow
photo autotrophically.

The biodiversity of microalgae is enormous and they represent
an almost untapped resource. It has been estimated that about
20,000–800,000 species exist of which about 40–50,000 species
are described [65,66].
2.3. Biochemical composition of algae

Algal biomass contains three main components: proteins, car-
bohydrates and lipid. The chemical compositions of various micro-
and macro-algae are shown in Table 3 [57,67]. While the percen-
tages vary with the types of algae, which comprise upto 40% of
their overall mass of fatty acids [57,68]. This fatty acids (oil) can be
extracted and converted into biodiesel.
3. Algal biofuels

Diverse varieties of biofuels such as bio-oil, -diesel, -ethanol,
-methane, -hydrogen, syngas and charcoal can be derived from
algal biomass using multidisciplinary conversion technology. The
following section of possible conversion process and end products
are presented briefly.



Table 2
Properties of major algal taxonomic groups.

S. no. Taxonomic group Nuc Chlorophyll Carotenoids Bilo proteins Storage products Flagellation & cell structure

1. Bacillariophyta (Diatoms) Eu a,c β-Carotenefucoxanthin. No Chrysolaminarin, oils 1 Apical flagellum in male gametes: cell in two halves with
elaborate markings.

2. Chloro phycophyta (green
algae)

Eu a,b β-Carotene, rarely lycopene, lutein. No Amylose (starch), oils 1, 2, 4 to many, equal, apical or subapical flagella.

3. Chrysophycophyta (golden
algae)

Eu a,c β-Carotene, fucoxanthin No Chrysolaminarin, oils 1 or 2 unequal, apical flagella, in some, cell surface covered by
characteristic scales.

4. Cyanobacteria (blue green
algae)

Pro a,c β-Carotene, phycobilins Phycoerythrin,
phycobilins

Glycogen Non-flagellated forms

5. Phaeco phycophyta (brown
algae)

Eu a,c β-Carotene, fucoxanthin, violaxanthin No Laminarin, soluble carbo-
hydrates, oils

2 Lateral flagella

6. Dinophyta (Dinoflagellates) Meso a,c β-Carotene, peridinin, neoperididnin dinox-
anthin, neodinoxanthin.

No Starch, oils 2 Lateral, 1 trailing,1 girdling flagellum, in most, there is a
longitudinal and transverse furrow and angular plates.

7. Rhodo phycophyta (red
algae)

Eu a, rarely d β-Carotene, zeaxanthin Phycoerythrin,
Phycocyanin

Floridean starch Oils,
Glycogen

Flagella absent

8. Euglenoids Meso a,b Phytoene, phytofluene, c-carotene, 8-zeacar-
otene, and f-carotene

No Paramylon Euglenoids have two flagella rooted in basal bodies located in
a small reservoir at the front of the cell. In Euglena, one fla-
gellum is very short, and does not protrude from the cell,
while the other is relatively long, and often easily visible with
light microscopy.

9 Cryptophyta Eu a,c2 Alloxanthin Phycoerythrin Amylose Two slightly unequal flagella
10 Haptophyta Eu a,c1,c2 Hexanoyloxyfucoxanthin, fucoxanthin, and

zeaxanthin
No Chrysolaminarin Two slightly unequal flagella

11 Xanthophyta (yellow green
algae)

Eu a,c β-Carotene, diadinoxanthin No Chrysolaminarin 1 Flagella

12 Raphidiophyta
(Chloromonads)

Eu a,c β-Carotene, diadinoxanthin zeaxanthin, vio-
laxanthin and an auroxanthin

No Oils Pair of flagella

Nuc¼nuclear characteristics (Prokaryote, Mesokaryote, or Eukaryote).
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Table 3
Biochemical composition of macroalgae and microalgae expressed on a dry matter
basis (% dry weight) [57,67].

Algae Protein Carbohydrates Lipid

Macroalgae
Hypnea valentiae 11.8–12.6 11.8–13.0 9.6–11.6
Acanthophora spicifera 12.0–13.2 11.6–13.2 10.0–12.0
Laurencia papillosa 11.8–12.9 12.0–13.3 8.9–10.8
Ulva lactuca 11.4–12.6 11.6–13.2 9.6–11.4
Caulerpa racemosa 11.8–12.5 16.0 9.0–10.5
Ulva reticulate 12.83 16.88 8.50
Enteromorpha compressa 7.26 24.75 11.45
Chaetomorpha aerea 10.13 31.50 8.50
Chaetomorpha antennina 10.13 27.00 11.45
Chaetomorpha linoides 9.45 27.00 12.00
Cladophora fascicularis 15.53 49.50 15.70
Microdictyon agardhianum 20.93 27.00 9.40
Boergesenia forbesii 7.43 21.38 11.42
Valoniopsis pachynema 8.78 31.50 9.09
Dictyosphaeria cavernosa 6.00 42.75 10.51
Caulerpa cupressoides 7.43 51.75 10.97
Caulerpa peltata 6.41 45.00 11.42
Caulerpa laetevirens 8.78 56.25 8.80
Caulerpa racemosa 8.78 33.75 10.63
Caulerpa fergusonii 7.76 23.63 7.15
Caulerpa sertularioides 9.11 49.50 6.99
Halimeda macroloba 5.40 32.63 9.89
Codium adhaerens 7.26 40.50 7.40
Codium decorticatum 6.08 50.63 9.00
Codium tomentosum 5.06 29.25 7.15

Microalgae
Scenedesmus obliquus 50–56 10–17 12–14
Scenedesmus quadricauda 47 – 1.9
Scenedesmus dimorphus 8–18 21–52 16–40
Chlamydomonas rheinhardii 48 17 21
Chlorella vulgaris 51–58 12–17 14–22
Chlorella pyrenoidosa 57 26 2
Spirogyra sp. 6–20 33–64 11–21
Dunaliella bioculata 49 4 8
Dunaliella salina 57 32 6
Euglena gracilis 39–61 14–18 14–20
Prymnesium parvum 28–45 25–33 22–39
Tetraselmis maculata 52 15 3
Porphyridium cruentum 28–39 40–57 9–14
Spirulina platensis 46–63 8–14 4–9
Spirulina maxima 60–71 13–16 6–7
Synechoccus sp. 63 15 11
Anabaena cylindrica 43–56 25–30 4–7
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3.1. Conversion technologies for algal biofuels

The technically feasible conversion options for algal biomass
and end-use of derived energy or energy carriers (liquid or gas-
eous fuels) are discussed in this section. The conversion of algal
biomass-to-energy encompasses the different processes, which
depend, to a large extent, on the types and sources of biomass,
conservation options and endues [69]. The conversion technolo-
gies applied for algae biomass can be divided into two basic
categories. They are thermochemical and biochemical conversion
(Fig. 2) [16,70,71]. Factors that influence choice of conversion
process include: the type and quantity of biomass feedstock; the
desired form of the energy; economic consideration; project spe-
cific; and the desired end form of the product [72].

3.1.1. Thermochemical conversion
Thermochemical conversion is the thermal decomposition of

organic components in biomass to yield fuel products [70]. The
thermochemical conversion process includes direct combustion,
gasification, liquefaction and pyrolysis as shown in Fig. 2. When
biomass is heated under oxygen deficient conditions, it generates
synthesis gas, or syngas, which consists primarily of hydrogen and
carbon monoxide. This syngas can be directly burned or further
processed for other gaseous or liquid products. In this sense,
thermal or chemical conversion of biomass is very similar to that
of coal [73].

3.1.1.1. Direct combustion for energy production. Combustion is the
chemical reaction between a fuel and oxygen which usually takes
place in the presence of air and is more commonly known as
burning. The products are carbon dioxide and water with the
release of heat. Biomass is burnt in the presence of air to convert
the stored chemical energy in biomass into hot gases [74]. Sulfur
emissions (0.05–0.2 wt%) are much lower and the formation of
particulate can be controlled at the source [75]. Combustion is
usually performed in a furnace, a boiler, or a steam turbine at
temperatures above 800 °C. It is possible to burn any type of
biomass, but combustion is only feasible for biomass with moist-
ure content o50%, dry weight [69]. Net energy conversion effi-
ciencies for biomass combustion power plants range from 20% to
40%, with higher efficiencies obtained in larger systems
(4100 MW) or when biomass is co-combusted in coal fired power
plants [72].

Only a very few reports are available for technically viable
utilization of algal biomass in direct combustion in literature, but a
life cycle assessment (LCA) of coal-algae co-firing [77] recom-
mended that coal-algae co-firing could lead to lower GHG emis-
sions and air pollution. Macroalgae species from the British Isles:
Fucus vesiculosus, Chorda filum, Laminaria digitata, Fucus serratus,
Laminaria hyperborea andMacrocystis pyrifera from South America,
has been studied by Ross et al. [78]. They demonstrated macro-
algae as fuel by investigating the combustion behaviors of mac-
roalgae. Combustion behavior was investigated using TGA in an
oxidizing atmosphere and pyrolysis products were analyzed by gas
chromatography–mass spectrometer (GC–MS) [78].

3.1.1.2. Gasification for syngas production. Gasification is a term
that describes a chemical process by which carbonaceous mate-
rials (hydrocarbon) are converted to combustible gas mixture or
synthesis gas (syngas). It is a partial oxidation of biomass with air,
oxygen and/or steam at high temperatures, typically in the range
800–1000 °C [79]. A flow diagram of algae system for fuel pro-
duction by low temperature catalytic gasification of biomass is
shown in Fig. 3 [70]. Syngas can be produced from biomass by two
routes namely catalytic and non-catalytic gasification. Non-
catalytic process requires a very high temperature for operation,
of about 1300 °C, whereas catalytic process can be operated at
significantly lower temperature. In advances, the temperature
requirement is expected to go downward further from the current
value of about 900 °C [73]. The gasification step involves the
reaction of biomass with air, oxygen, or steam to produce a gas-
eous mixture of CO, CO2, H2, CH4 and N2 either known as producer
gas or syngas, depending on the relative proportions of the com-
ponent gases [76,80]. Producer gas is primarily useful as a fuel for
stationary power generation, whereas syngas is presently used to
make a range of fuels and chemical intermediates. Syngas is a low
calorific gas (typical 4–6 MJ m�3), that can be burnt directly or
used as a fuel for gas engines or gas turbines [81]. For transpor-
tation fuels, the main syngas derived routes to fuels are as follows:
1. hydrogen by water-gas-shift reaction (WGS) [82] and 2. hydro-
carbons by Fischer–Tropsch (F–T) synthesis or methanol synthesis
followed by further reaction to produce hydrocarbon or oxyge-
nated liquid fuels [83]. The WGS reaction uses CO, H2O to give H2

and CO2. It can be used to upgrade producer gas to syngas by
enriching the H2 content or to produce H2 as a product [16].

Several studies have been conducted on gasification char-
acteristics of microalgae biomass. Hirano et al. [84] partially oxi-
dized Spirulina at temperature ranging from 850 to 1000 °C and
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determined the gas composition required to generate theoretical
yield of methanol. They estimated that algae biomass gasification
at 1000 °C produced the highest theoretical yield of 0.64 g
methanol from 1 g of biomass. Minowa and Sawayama [85] gasi-
fied the microalgae Chlorella vulgaris in a novel system with
nitrogen cycling to obtain a methane-rich fuel. All nitrogen in the
microalgae was converted into ammonia during the gasification,
and the recovered solution, in which ammonia was dissolved,
could be used as a nitrogen nutrient. A novel energy production
system with nitrogen cycling combined with low temperature
catalytic gasification of the algae has been reported [85]. Elliot and
Sealock [86] have also developed a low temperature catalytic
gasification of biomass with a high moisture content. Biomass
with a high moisture is gasified directly to a methane rich fuel gas
without drying. In addition, nitrogen in the biomass is converted
to ammonia during the reaction [85].

The LCA study on utilization of macroalgae for enhanced CO2

fixation and biofuel production was performed by Aresta et al.
[87]. They demonstrated that, there is a potential energy benefit
associated to recycle carbon by enhanced fixation of CO2 by
macroalgae. In the best case considered so far, macroalgae can
generate a net energy in the order of 11,000 MJ t�1 dry algae
compared to 9500 MJ t�1 than a microalgae gasification can do.

3.1.1.3. Thermochemical liquefaction for liquid biofuel production.
Thermochemical liquefaction is a process that can be employed to
convert a wet algal biomass material into a liquid fuel [88]. Algal
cell precipitates derived from centrifugation, which are of high
moisture content, are thus good raw materials for liquefaction
[89]. This process is a low-temperature (300–350 °C), high-
pressure (5–20 MPa) process aided by a catalyst in the presence
of hydrogen to yield bio-oil [74]. Liquefaction usually produces
water insoluble oils of high viscosity and usually requires solvents,
reducing gases such as CO or H2 and/or catalysts to be present in
addition to biomass [80]. The liquefaction is performed in an
aqueous solution of alkali glycerin, propanol, butanol or direct
liquefaction [90] or alkaline earth salt at about 300 °C and 10 MPa
without a reducing gas such as hydrogen and/or carbon monoxide
[91]. The process utilizes the high water activity in sub-critical
conditions to decompose biomass materials down to shorter and
smaller molecular materials with a high energy density [88]. Alkali
salts such as sodium carbonate and potassium carbonate, can act
as catalyst for hydrolysis of macromolecules such as cellulose and
hemicellulose into smaller fragments. The separation scheme is
presented in Fig. 4 [89,91–93].

Many investigations were carried out on the characteristics of
algal biomass as a feedstock (Table 4) [56]. Dote et al. [94] suc-
cessfully used thermochemical liquefaction at 300 °C on Botryo-
coccus braunii to achieve a maximum yield of 64% dry wt. based on
oil with HHV of 45.9 MJ kg�1 and also declared a positive energy
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balance for the process (output/input ratio of 6.67:1). In a similar
study, an oil yield of 42% dry wt was obtained from Dunaliella
tertiolecta giving a HHV of 34.9 MJ kg�1 and positive energy bal-
ance of 2.94:1 [91].

Zhou et al. [95] investigated the possibility of using macroalgae
Enteromorpha prolifera for bio-oil production by hydrothermal
liquefaction. Effects of the temperature, reaction time and alkali
catalyst on product yields were studied and the characters of
liquid and solid products were analyzed using multiple analysis
methods, such as, elemental analysis, Fourier Transform Infrared
(FTIR) spectroscopy, GC–MS and 1H Nuclear Magnetic Resonance
Spectroscopy (1H NMR).

3.1.1.4. Pyrolysis for bio-oil production. Pyrolysis is a thermal
degradation of biomass by heat in the absence of oxygen, which
results in the production of charcoal (solid), bio-oil (liquid) and
fuel gaseous products at medium to high temperatures (350–
700 °C) [69,96] or by heating in the presence of a catalyst [97], at
high heating rate (103–104 K/s) and with a short gas residence
time to crack into short chain molecules and then being cooled to
liquid rapidly [98]. The pyrolysis of biomass is targeted to recover a
biofuel with a medium-low calorific power [90]. For biomass-to-
liquid fuel conversion, it is deemed to have the potential for large
scale production of biofuels that could replace petroleum based
liquid fuel [2]. Table 5 outlines the characteristics and expected
yields of different modes of pyrolysis [56,99].

Depending on the operating conditions, the pyrolysis process
can be divided into three subclasses: (a) conventional pyrolysis, (b)
fast pyrolysis and (c) flash pyrolysis [16].

3.1.1.4.1. Conventional pyrolysis. Conventional pyrolysis occurs
under a slow heating rate (0.1–1 K/s) and residence time is
45–550 s. In the first stage of biomass decomposition which occurs
in between 550 and 950 K is called pre-pyrolysis. During this
stage, some internal rearrangement such as water elimination,
bond breakage, appearance of free radicals, formation of carbonyl,
carboxyl and hydroperoxide group take place [100]. The second
stage of solid decomposition corresponds to the main pyrolysis
process. It proceeds with a high rate and leads to the formation of
pyrolysis products. During the third stage, the char decomposes at
a very slow rate and it forms carbon rich solid residues.

3.1.1.4.2. Fast pyrolysis. It occurs in the high temperature range of
850–1250 K with fast heating rate (10–200 K/s), short solid residence
time (0.5–10 s) and fine particle (o1 mm). The fast pyrolysis is
recommended for the production of liquid and/or gaseous products.
In fast pyrolysis process, the biomass decomposes to generate vapors,
aerosol and some charcoal like char. After cooling and condensation
of vapors and aerosol a dark brown mobile liquid is formed that has
heating value, that is half of that of conventional fuel oil. Fast pyrolysis
produced 60–75% of bio-oil, 15–25% solid char and 10–20% non-
condensed gases [100]. The advantage of fast pyrolysis is that, it can
directly produce a liquid fuel [101].

3.1.1.4.3. Flash pyrolysis. It differs strongly from that of con-
ventional pyrolysis, which is performed in the temperature range
of 1050–1300 K, fast heating rate (41000 K/s), short residence
time (o0.5 s) and very fine particle (o0.2 mm). Bio-oil produc-
tion from biomass pyrolysis is typically carried out via flash pyr-
olysis [90]. The produced oil can be mixed with the char to pro-
duce bioslurry. Bioslurry can be more easily fed to the gasifier
(gasifier condition: 26 bar; 927–1227 K) for efficient conversion to
syngas. The conversion of biomass to crude oil can have an effi-
ciency of up to 70–80% for flash pyrolysis process. The so called
bio-crude can be used in engines and turbines [90,102]. A con-
ceptual fluidized bed fast pyrolysis system is shown in Fig. 5
[101,103]. However, there are technical challenges as pyrolysis oils
are acidic, unstable, viscous and contain solids and chemically
dissolved water [104]. Therefore, the process oil will require
upgrading hydrogenation and catalytic cracking to lower oxygen
content and removes alkalis [76].

Since algae usually have high moisture content, a drying pro-
cess requires much heating energy [92]. Algae are subjected to
pyrolysis in the fluid bed reactor. The result of the reaction then
flows to a cyclone and is separated into char, biofuel and gas. The
resultant gas can be used for heating, for drying the raw material
or for heating for the pyrolysis process [103].

Compared to other conversion technologies, research on pyrolysis
of algal biomass is quite extensive and has achieved reliable and
promising outcomes that could lead to commercial exploitation [56].
Miao and Wu [105] used fast pyrolysis to enhance oil yield from
microalgae Chlorella prothothecoides. The recorded oil yield of 57.9%
dry wt (HHV of 41 MJ kg�1) and the results suggest that pyrolysis has
potential in algal biomass-to liquid conversion. Miao et al. [98]
achieved bio-oil yields of 18% (HHV of 30 MJ kg�1) and 24% (HHV of
29 MJ kg�1) with fast pyrolysis of C. prothothecoides and Microcystis
aeruginosa grown phototrophically, respectively. Demirbas [106]
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Table 5
Different modes of pyrolysis [99].

Mode Conditions Liquid (%) Char (%) Gas (%)

Flash pyrolysis Moderate temperature
(500 °C), short hot vapor
residence time (about 1 s)

75 2 13

Fast pyrolysis Moderate temperature
(500 °C), moderate hot vapor
residence time (about 10–
20 s)

50 20 30

Slow pyrolysis Low temperature (400 °C),
very long solids residence
time

30 35 35
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experimenting with C. prothothecoides, showed that the bio-oil yield
increased in line with temperature, that increased up to a point and
then decreased at higher temperatures. For example, the yield rose
from 5.7% to 55.3% with an increase from 254 to 502 °C and subse-
quently decreased to 51.8% at 602 °C. They recorded a HHV from
microalgae of 39.7 MJ kg�1obtained at temperatures ranging from
502 to 552 °C. Results indicate that bio-oils from microalgae (Table 6)
are of a higher quality than those extracted from lignocellulosic
materials [96,105].

Zhao et al. [107] carried out the production of bio-oil from
marine macroalgae E. prolifera by thermochemical processing
methods, such as, pyrolysis using free-fall Reactor. Rowbotham
et al. [108] performed thermal pyrolysis to convert macroalgae
Laminaria digitata into fuel and commodity chemicals.

3.1.1.5. Hydrogenation. Hydrogenation is a reductive chemical
reaction, that results in an addition to hydrogen (H2), usually to
saturate organic compounds. The process consists of the addition
of hydrogen atoms to the double bonds of a molecule by the use of
a catalyst. Algal hydrogenation is performed by using an autoclave
under high temperature and pressure conditions in the presence
of a catalyst and a solvent [103]. Algal hydrogenation is a three-
phase operation in which contact must be established between the
gaseous phase (hydrogen and hydrocarbon phase), liquid phase
(mixture of solvent and liquid product) and solid particle phase
(algal and catalyst) in order to achieve algal conversion and to
promote the transfer of momentum, heat and mass [89,103]. In
general, higher temperatures and longer reaction time increase
the degree of conversion and decrease the asphaltene yield in the
overall hydrogenation of algae. The oil yield and the degree of
conversion increases proportionally with the maximum hydrogen
pressure of about 8.2 MPa [103].

3.1.2. Biochemical conversion
The biological process of energy conversion of biomass into

fuels includes anaerobic digestion, alcoholic fermentation, photo-
biological hydrogen production, transestrification and in-situ
transesterification [109].

3.1.2.1. Anaerobic digestion for biogas (methane) production.
Anaerobic digestion (AD) is the conversion of organic wastes
converted into a bio-gas, which consists of primarily methane
(CH4) and carbon dioxide, with traces of other gases such as
hydrogen sulfide (Fig. 6) [16,110]. It involves the breakdown of
organic matter, to produce a gas with an energy content of about
20–40% of the lower heating value of the biomass. Anaerobic
digestion process is appropriate for high moisture content (80–
90% moisture) organic wastes [69], which can be useful for wet
algal biomass. The AD process occurs in three sequential stages of
hydrolysis, fermentation and methanogenesis. In hydrolysis, the
complex compounds are broken down into soluble sugars. Then,
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Table 6
Comparison of typical properties of petroleum oil and bio-oils from fast pyrolysis of
wood and microalgae [96,105].

Properties Typical values

Bio-oils Petroleum oil

Wood Microalgae

C (%) 56.4 62.07 83.0–87.0
H (%) 6.2 8.76 10.0–14.0
O (%) 37.3 11.24 0.05–1.5
N (%) 0.1 9.74 0.01–0.7
Density (kg l�1) 1.2 1.06 0.75–1.0
Viscosity (Pa s) 0.04–0.20 (at 40 °C) 0.10 (at 40 °C) 2–1000
HHV (MJ kg�1) 21 29–45.9 42
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fermentative bacteria convert these into alcohols, acetic acid,
volatile fatty acids (VFAs) and a gas containing H2 and CO2, which
is metabolized into primarily CH4 (60–70%) and CO2 (30–40%) by
methanogens [111]. The gas has a heating value of 650–750 Btu/ft3

[16]. It has been projected that, the conversion of algal biomass
into methane could recover as much energy as obtained, from the
extraction of cell lipids [112], while leaving a nutrient rich waste
product, that can be recycled into a new algal growth medium
[113,114]. Microalgae can have a high proportion of proteins, that
result in low C/N ratios (ca. 10) which can affect the performance
of the anaerobic digester. This problem may be resolved by co-
digestion with a high C/N ratio product (e.g. waste paper). Yen and
Brune [115] achieved a significant increase in methane production
with the addition of waste paper to algal biomass. They obtained
double the methane production rate (1.17 ml l�1 per day vs.
0.57 ml l�1 per day) from 50/50 waste paper/algal biomass blend
compared to anaerobic digestion of pure algal biomass. Due to
increase in the cost of energy, the anaerobic digestion of biomass is
an attractive, alternative for production of fuel and biofertilizer for
organic cultivation [16].

3.1.2.2. Alcoholic fermentation for bioethanol production. The term
fermentation can generally be defined as the metabolic process, in
which, an organic substrate goes under chemical changes due to
activities of enzymes, secreted by the micro-organisms. Alcoholic
fermentation is the conversion of biomass materials, which con-
tain sugars, starch or cellulose into ethanol [69]. The sugar is
converted into ethanol by yeast. There are two basic types of fer-
mentation, (a) aerobic and (b) anaerobic depending upon oxygen,
required in the process or not. Algal starch requires additional
processing before fermentation [76].

Production of ethanol by using algae as raw material, can be
performed, in the following procedure. The biomass is ground
down and the starch is converted to sugars, which is then mixed
with water and Saccharomycess cerevisiae yeast and kept warm in
large tanks called fermenters to begin fermentation [76]. The yeast
breaks down the sugar and converts it into ethanol as shown in Eq.
(1) (Fig. 7).

C6H12O6-2C2H5OHþ2CO2

MW ð180Þ ð2� 46Þ ð2� 44Þ ð1Þ

The ethanol is drained from the tank and pumped to a holding
tank, to be fed to a distillation unit. A purification process (dis-
tillation) is required to remove the water and other impurities in
the diluted alcohol product (10–15% ethanol) [69]. The con-
centrated ethanol (95% volume for one distillation) is drawn off
and condensed into a liquid form, which can be used as a sup-
plement or a substitute for petrol in cars [72,99]. The solid residue
from the process can be used for animal feed or for gasification
process [69]. This helps offset feedstock costs which typically
make up 55–80% of the final alcohol selling price [56].

Microalgae such as C. vulgaris are a good source of ethanol, due
to the high starch content (ca. 37% dry wt) and for which up to 65%
ethanol conversion efficiency has been recorded [116]. Ueno et al.
[117] investigated ethanol production by dark fermentation in the
marine green alga Chlorococcum littorale. Under dark anaerobic
conditions, 27% of the cellular starch was consumed within 24 h at
25 °C, the cellular starch decomposition being accelerated at
higher temperature. Ethanol, acetate, hydrogen and carbon diox-
ide were obtained as fermentation products (Fig. 7) [103]. The
maximum productivity of ethanol was 450 mmol/g of dry weights
at 30 °C.

3.1.2.3. Photobiological process for hydrogen production. Hydrogen
(H2) is a clean and an efficient energy carrier [79]. Algae possess
the necessary genetic, metabolic and enzymatic characteristics to
photo produce H2 gas [118]. Under anaerobic conditions hydrogen
is produced from algae, as an electron donor in the CO2 fixation
process and is developed in both light and dark [119]. During
photosynthesis, algae convert water molecules into hydrogen ions
(Hþ) and oxygen; the hydrogen ions are then subsequently con-
verted by hydrogenase enzymes into H2 under anaerobic
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conditions [111]. Due to reversibility in the nature of the reaction,
hydrogen is either produced or consumed by the simple conver-
sion of protons to hydrogen [79]. The photosynthetic oxygen
produced, inhibits the key enzyme hydrogenase and the photo-
synthetic hydrogen production process is hindered [111,120–122].
Therefore, algae cultures for hydrogen production must be sub-
jected to anaerobic conditions. There are two fundamental
approaches for photosynthetic H2 production from water. The first
is the H2 production process, which is a two stage photosynthesis
process, where photosynthetic oxygen production and H2 gas
generation are spatially separated [118].

In the first stage, algae are grown photosynthetically in normal
conditions. During the second stage, the algae are deprived of sulfur,
thereby inducing anaerobic conditions and stimulating consistent
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hydrogen production [122]. This production process becomes limited
with time, as hydrogen yield will begin to level off after 60 h of pro-
duction. The use of this production system does not generate toxic or
environmentally harmful products but could give value added pro-
ducts as a result of biomass cultivation [123].

The second approach involves the simultaneous production of
photosynthetic oxygen and H2 gas. In this approach, electrons that
are released upon photosynthetic H2O oxidation are fed directly
into the hydrogenase-mediated H2-evolution process [118]. The H2

productivity is theoretically superior to the two-stage photo-
synthetic process. Melis and Happe [122] found that using the
two-stage photosynthesis process and H2 production, a theoretical
maximum yield of hydrogen by green algae could be about
198 kg H2 ha�1 per day.

3.1.2.4. Transesterification for biodiesel production. Transesterification is
a reaction, in which, the glycerol backbone of the triglycerides (TG)
is replaced by methanol which esterifies fatty acids, the side chains of
TG, into methyl esters (biodiesel). The general equation for
H2C O C R1

HC O C R2

H2C O C R3

O

O

O

H3C OH
Base

Catalys
3

MethanolTriglyceride

Fig. 9. Base catalyzed transesterification. (a)
transesterification is shown in Fig. 9 [124]. Specifically, a TG molecule
(primary compound in algal oils) reacts with a low molecular weight
alcohol, yielding a mono alkyl ester and a byproduct glycerin, which is
used in the pharmaceutical and cosmetic industries. The transester-
ification reaction proceeds in 3 steps: 1. TG reacts with methanol in
the presence of a catalyst to produce diglycerides (DG) 2. DG reacts
with methanol to generate monoglycerides (MG) 3. Finally, MG reacts
with methanol to produce ME and glycerol. One mole of ME is gen-
erated from per mole of methanol reacted at each step, in all 3 mol of
ME are produced [125]. The reactions are often catalyzed by an acid or
a base (Figs. 8 and 9) [97], using a homogeneous or heterogeneous
catalytic process [126]. This is the most predominant and significant
method used to produce biodiesel for commercial scale.

Miao and Wu [32] performed transesterification reaction with C.
protothecoides for the production of biodiesel. The best combination
of factors was 100% catalyst quantity (based on oil weight) with 56:1
M ratio of methanol to oil at temperature of 30 °C. Biodiesel pro-
duction efficiency of C. vulgaris, Rhizoclonium hieroglyphicum and
mixed algae culture was measured by transesterification process.
t
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Yield of biodiesel from extracted algal oil was calculated as C. vul-
garis (95%), Rhizoclonium hieroglyphicum (91%) and mixed algae
culture (92%) [127]. Macroalgae Caulerpa peltata, Enteromorpha
compressa was subjected to transesterification reaction for the pro-
duction of biodiesel. Acid–base catalyzed transesterification was
applied to this macroalgal biomass to convert algal oil into biodiesel
[128,129].

3.1.2.5. Direct methanolysis for biodiesel production. Conventional
method for the production of biodiesel from algae involves various
stages; oil extraction, purification (degumming, deacidification,
dewaxing, dephosphorization, dehydration, etc.) and esterifica-
tion/transesterification. The requirement of these multiple pro-
cessing stages constitutes over 70% of the total production cost of
biodiesel [130]. Therefore, development of direct methanolysis is
also known as in-situ extraction, direct transesterification or
simply as a reactive extraction that has the potential to cut down
the processing cost. Reactive extraction differs from the conven-
tional biodiesel production process in which the oil bearing
material contacts with the alcohol directly instead of reacting with
extracted oil. In other words, extraction and transesterification
proceed in a single step, with alcohol acting as an extraction sol-
vent and as a transesterification reagent [131]. Therefore, reactive
extraction eliminates the requirement of two separate stages of
biodiesel production processes, such as, costly oil extraction pro-
cess and transesterification reaction process, thus reducing pro-
cessing time, production cost, amount of solvent required and
procedure of the production system [132].

Haas and Wagner [133] achieved 83% of maximum biodiesel yield
from algal biomass through in-situ transesterification method at
methanol/fatty acid molar ratio of 220:1, 65 °C reaction temperature
for 2 h reaction time. Biodiesel was produced from Chlorella pyr-
enoidosa using in-situ transesterification process [134].

Suganya et al. [135] carried out an ultrasound-enhanced rapid
in-situ transesterification of marine macroalgae Enteromorpha
compressa for biodiesel production. The maximum biodiesel yield
was calculated as 98.89% from this direct methanolysis process.

In the similar way, Amin [103] discussed the main conversion
processes of microalgae into energy. Since microalgae have high
water content, not all biomass energy conversion processes can be
applied. The properties of the microalgae product are almost
similar to those of offish and vegetable oils and therefore, it can be
considered as a substitute of fossil oil.
4. Biofuel production and environmental pollution control
using algae: integrated approaches

In last few decades, various researchers have worked on the use
of seed oils, for the production of biofuels. Production of second
generation fuels such as bioethanol and biodiesel from biomass
grown on arable lands, specially the use of oil-seeds for biodiesel,
have raised the food prices. Third generation biofuels from algal
cells grown on non-arable land are the exact results of the food-
fuel competition. Wastewater and flue gases are the best options
for reducing the environmental burden from the cultivation of
algal biomass [136].

4.1. Bio-mitigation of CO2 emission in algal cultivation

One of the key advantages of using microalgae for biofuel
production lies in the ability of microalgal species to tolerate high
CO2 content in feeding air streams [137]. It allows an efficient
capturing of CO2 from high-CO2 streams such as flue gases and
flaring gases (CO2 content 5–15%) [138] in comparison with ter-
restrial plants, which typically absorb only 0.03–0.06% CO2 from
the atmosphere. The benefit of microalgae is evident in terms of
CO2 mitigation [46]. Microalgae can typically be used to capture
CO2 from three different sources: atmospheric CO2, CO2 emission
from power plants and industrial processes and CO2 from soluble
carbonate. Capture of atmospheric CO2 is probably the most basic
mechanism, to sink carbon and relies on the mass transfer from
the air to the microalgae in their aquatic growth environments
during photosynthesis. Flue gas emission from an industrial pro-
cess unit (e.g. from fuel-fired power plants) as a source of CO2 for
the microalgae growth is envisioned to have a great potential to
diminish CO2 and to provide a very promising alternative to cur-
rent GHG emissions mitigation strategies. A number of microalgae
species are able to assimilate CO2 from soluble carbonates such as
Na2CO3 and NaHCO3 [44]. Zeiler et al. [139] demonstrated that,
Monoruphidium minutum algae could efficiently utilize flue gas
containing high levels of carbon dioxide, as well as sulfur and
nitrogen oxides, as a feedstock to produce substantial biomass. The
green algae Chlorophyta showed the ability to fix CO2 while cap-
turing solar energy with an efficiency of 10–50 times greater than
that of terrestrial plants [44]. Chlorococcum littorale, a marine
alga, showed remarkable tolerance to high CO2 concentration of
up to 40% [140]. Chlorella Strains from hot springs, also showed to
be tolerant to high temperatures up to 42 °C, for CO2 fixation from
industrial flue gases containing up to 40% CO2 [141].

Chang and Yang [137] found that certain species of Chlorella
could grow in an atmosphere containing CO2 up to 40% (v/v).
Doucha et al. [142] recorded 10–50% reduction in CO2 concentra-
tion in flue gases using Chlorella sp., with the efficacy, decreasing
with an increasing rate of flue gas injection into microalgae cul-
ture. de Morais and Costa [143], using Spirulina sp. obtained a
maximum daily CO2 biofixation of 53.29% for 6% (v/v) CO2 and
45.61% for 12% (v/v) CO2 in the injected flue gas, with the highest
mean fixation rate being 37.9% for 6% (v/v) CO2. They reported that
the microalgae species, S. obliquus and C. kessleri are capable to
grow in media containing up to 18% (v/v) CO2. They also achieved
biofixation rates of 28.08% and 13.56% for 6% (v/v) and 12% (v/v)
CO2 respectively, using S. obliquus. Kadam [77] demonstrated the
potential benefits of recycling CO2 for microalgae biomass pro-
duction through co-firing coal and microalgae to reduce the
environmental impact of power generation. Their LCA results
showed that co-firing reduced CO2 and methane. Hence, GHG
emissions through the recycling of microalgae biomass and the
reduction in coal use, also registered lower net SOx and NOx

particulates.
Comparison study was conducted by Yoo et al. [144] with three

species of microalgae such as B. braunii, C. vulgaris and Scene-
desmus sp. under flue gas conditions. From the study, it was found
that Scenedesmus sp. were the most suitable for CO2 mitigation
due to high rates of biomass production (0.218 g l�1 per day). B.
braunii and Scenedesmus sp. were found to grow better using flue
gas as compared to air enhanced with CO2.

At present, the high cost of biodiesel is the major obstacle for
its commercialization [26]. Bio-mitigation of CO2 emissions pro-
vides a complementary function that may be exploited to reduce
cost and to enable sustained utilization of microalgae as a biofuel
resource [56].

4.2. Co-processing of wastewater treatment and microalgae farming

Heterotrophic cultivation systems involving microalgae pro-
duction and wastewater treatment (e.g. of amino acids, enzyme, or
food industries wastewaters) seem to be quite promising for
microalgae growth combined with environmental cleaning [43].
There is a unique opportunity to carry out co-processing of was-
tewater treatment and nutrients supplement to algae growth
using nutrient-rich effluent streams (nitrogen and phosphorus).
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This leads to find a pathway for the removal of chemical and
organic contaminants, heavy metals and pathogens from waste-
water while producing biomass for biofuel production [145].
Wastewater treatment using algae has many advantages. It offers
the feasibility to recycle these nutrients into algae biomass as a
fertilizer and thus can offset treatment cost. Oxygen rich effluent is
released into water bodies after wastewater treatment using algae
[146]. Wastewater rich with CO2 provides a conducive growth
medium for microalgae because the CO2 balances the Redfield
ratio (molecular ratio of carbon, nitrogen and phosphorus in
marine organic matter, C:N:P¼106:16:1) of the wastewater
allowing for faster production rates, reduced nutrient levels in the
treated wastewater, decreased harvesting costs and increased lipid
production [56,147]. Additionally, microalgae can mitigate the
effects of sewage effluent and industrial sources of nitrogenous
waste and at the same time, contributing to biodiversity. More-
over, removing nitrogen and carbon from water, microalgae can
help to reduce the eutrophication in the aquatic environment [43].

Most of the used water turns into wastewater polluting the
environment and creating health hazards. If 50% (495 billion m3)
of this consumed water is available for algae production, it could
generate about 247 million tons of algal biomass and about 37
million tons of oil. Yet the variations in the composition of was-
tewater limit such a notion, since only specific algae may perform
to their potential [148]. Therefore, it is essential to select strains,
capable of growing in variety of wastewaters and producing
feedstock for biofuels that can compete in terms of land and water
use, carbon sequestration and GHG emission savings, etc. Waste-
water generated by carpet mills along with sewage from Dalton
area in North Central Georgia (40–55 million m3 year�1) has the
potential to generate up to 15,000 t of algal biomass which can
produce about 2.5–4 million L of biodiesel and remove about
1500 t of nitrogen and 150 t of phosphorus from the wastewater in
one year [148].

Several applications in wastewater treatment have been found
in the literature. For example, Sawayama et al. [149] used B. braunii
to remove nitrate and phosphate from sewage after primary
treatment along with the production of hydrocarbon-rich biomass.
Martinez et al. [150] achieved a significant removal of phosphorus
and nitrogen from urban wastewater using the microalgal S. obli-
quus. They were able to achieve 98% elimination of phosphorus
and a complete removal (100%) of ammonium in a stirred culture
at 25 °C and 183 h retention time, respectively. Gomez-Villa et al.
[151] experimented with outdoor cultivation of microalgal S.
obliquus in artificial wastewater, achieved the final dissolved
nitrogen concentrations which were 53% and 21% of initial values
in winter and summer, respectively. Phosphorus, which was only
removed during the day, achieved a total reduction of 45% in
winter and 73% in summer [155]. Aslan and Kapdan [152] used C.
vulgaris for nitrogen and phosphorus removal from wastewater
with an average removal efficiency of 72% for nitrogen and 28% for
phosphorus. Hodaifa et al. [153] recorded 67.4% reduction in BOD5

with S. obliquus cultured in diluted (25%) industrial wastewater
from olive-oil extraction.

Yun et al. [154] successfully grew C. vulgaris in wastewater
discharge from a steel plant to achieve an ammonia bioremedia-
tion rate of 0.022 g NH3 l�1 per day. For the biodegradation of
hazardous or toxic compounds, it is possible to use microalgae to
generate the oxygen required by bacteria to biodegrade pollutants
such as polycyclic aromatic hydrocarbons

(PAHs), phenolics and organic solvents. Photosynthetic oxygen
generated from the microalgae production reduces or eliminates
the need for external mechanical aeration [145]. Chojnacka et al.
[155] proved that Spirulina sp. acted as a bio-sorbent, thus was
able to absorb heavy metal ions (Cr3þ , Cd2þ and Cu2þ).
Additionally, extensively used microalgae cultures for con-
taminants’ removal from wastewater are Chlorella sp. [156,157],
Scenedesmus sp.[150] and Spirulina sp. [158], Nannochloris [159], B.
brauinii [160] and cyanobacterium Phormidium bohneri [161,162]
and also their pollutants’ removal have been reported.
5. Commercial application of algae

Algae were promising organisms for providing both novel
biologically active substances and essential compounds for human
nutrition [163]. Therefore, an increasing supply for algal extracts,
fractions or pure compounds for the economical sector was nee-
ded [164]. In this regard, both secondary and primary metabolites
production from algal cells are shown in Fig. 10.

5.1. Commercial applications of microalgae

Microalgae have three fundamental attributes that can be
exploited to useful ends: They are (1) very diverse, (2) often
phototrophic and (3) virtually unexplored. These attributes can
provide significant technical and commercial advantages. Micro-
algae provide a large and untapped reservoir of potential new
products and applications [58].

Table 9 indicates microalgae as a potential source, for high-
value products in commercial scale level.

5.1.1. Microalgae in human and animal nutrition
5.1.1.1. Human nutritional products. Nutritional supplements pro-
duced from microalgae have been the primary focus of microalgal
biotechnology. Microalgae have been used for food by humans for
thousands of years. Microalgae are observed as having a protein
quality value, greater than other vegetable sources, for example,
wheat, rice and legumes, but poorer than animal sources, for
example, milk and meat [43]. Microalgae for human nutrition are
now-a-days marketed in different forms, such as tablets, capsules
and liquids. They can also be incorporated into pastas, snack foods,
candy bars or gums and beverages [165,166]. Owing to their
diverse chemical properties, they can act as a nutritional supple-
ment or represent a source of natural food colorants [62,167,168].
The commercial applications are dominated by four strains:
Arthrospira, Chlorella, D. salina and Aphanizomenon flos-aquae.

Dried biomass or cell extracts produced from Chlorella
[165,169], Dunaliella [170] and Spirulina [171] have dominated the
commercial opportunities. These products are directed mainly at
the nutraceutical or health food market and are collectively worth
many hundreds of million dollars [62].

Chlorella is sold as a health food or dietary supplement [172].
Health benefits of this microalgae are efficacy on gastric ulcers,
wounds and constipation together with preventive action against
both atherosclerosis and hyper-cholesterol and antitumor activity
[57]. The most important active substance is b-1,3-glucan which is
believed to be an active immune-stimulator, free radical scavenger
and a reducer of blood lipids [61]. As affirmed by Barrow and
Shahidi [173] Chlorella sp. presents several health benefits, when
their extracts are ingested. For example, it can increase hemoglo-
bin concentrations, lower blood sugar levels and act as hypocho-
lesterolemic and hepatoprotective agents during malnutrition and
ethionine intoxication. Polysaccharide complexes from C. pyr-
enoidosa and Chlorella ellipsoidea contain glucose and any combi-
nation of galactose, rhamnose, mannose, arabinose, N-acetyl glu-
cosamide and N-acetyl galactosamine [173]. These complexes have
immuno-modulating properties, specifically immune stimulatory
activity and can inhibit the proliferation of Listeria monocytogenes
and Candida albicans [43]. In addition, Chlorella extracts may be
administered to mammals, to increase the proliferation of
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splenocytes and production of cytokines and can be used as a
supplement to further stimulate their immune response [173].

Spirulina (Arthrospira) is used in human nutrition because of
its high protein content and excellent nutrient value
[49,59,174,175]. It is also a valuable source of the essential fatty
acid (linolenic acid) that cannot be synthesized by humans [57]. In
addition, this microalgae has various possible health-promoting
effects: the alleviation of hyperlipidemia, suppression of hyper-
tension, protection against renal failure, growth promotion of
intestinal Lactobacillus and suppression of elevated serum glucose
level [176]. Many companies are producing ‘‘nutraceuticals’’ (food
supplements with claimed nutritional and medicinal benefits)
made from Spirulina [61]. Spirulina has been exploited by ancient
people in both Chad and Mexico as a source of food [28,177]. The
market value of dried Spirulina was estimated to be US$40 million
in 2005 [60]. Spirulina sp. has been shown to increase the pro-
duction of plaminogen-activating factor in vascular endothelial
cells and thus facilitate cardiovascular disease prevention [173].
Additionally, several antioxidant compounds (e.g. dimethylsulfo-
niopropionate, mycosporines or mycosporinelike amino acids,
b-carotene, astaxanthin and other carotenoids) have been isolated
from microalgal sources, having the potential to protect against
oxidative stress, cause a wide spectrum of diseases and ageing. A
significant amount of Arthrospira production is realized in China
and India.

There are health concerns over the ingestion of cyanobacteria
(e.g. Spirulina). Cox et al. [178] studied over 50 strains of cyano-
bacteria and found that nearly all the strains produced the neu-
rotoxin B-N-methylamino-L-alanine (BMAA). BMAA is linked to
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Table 7
Potential of microalgae as primary PUFA resources [56,59].

PUFA Structure Potential

γ-Linolenic acid (GLA) 18:3 ω6, 9, 12 Infant form
Nutritiona

Arachidonic acid (AA) 20:4 ω6, 9, 12,15 Infant form
Nutritiona

Eicosapentaenoic acid (EPA) 20: 5 ω3, 6, 9, 12, 15 Nutritiona
Aquacultu

Docosahexaenoic acid (DHA) 22: 6 ω3, 6, 9, 12, 15, 18 Infant form
Nutritiona
Aquacultu
amyptrophic lateral sclerosis–Parkinsonism dementia complex,
Lou Gehrig’s disease (ALS) and Alzheimer’s disease.

Dunaliella sp. (especially Dunaliella salina) has become popular
as a food grade green microalgae. In particular, due to their lipids
and protein contents, glycerol concentration, β-carotene content
(up to 4% of dry weight) and they have an exceptional ability to
grow under brackish conditions [173]. D. salina is exploited for its
β-carotene content that can reach 14% of dry weight [179]. For
human consumption, Cognis Nutrition and Health, the world’s
largest producer of this strain, offers Dunaliella powder as an
ingredient of dietary supplements and functional foods [59].

At present this microalgae is cultivated by several companies,
in both Israel and Australia, as sources of vitamins A and C and as
dietary supplements and powders [180]. Furthermore, it has been
postulated that the carotenoids found in Spirulina sp. and Duna-
liella sp. may be more potent anticancer agents than β-carotene
[51,181].

The last major important commercial application strain is
Aphanizomenon flos-aquae. According to many research studies,
used alone or in combination with other nutraceuticals and nat-
ural food products, A. flos-aquae promotes overall good health
[182–184].

5.1.1.2. Animal nutrition
5.1.1.2.1. Aquaculture feeds. Aquaculture animals must obtain all

their nutrients through the food chain. Algae are the basic producer
in the food chain. The nutrient properties of the algae are critical for
the growth and survival of larvae and adults. In a typical food chain,
algae are consumed by zooplankton (rotifers, cladocerans, brine
te Pathway 
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Table 8
Carotenoids from microalgae.

Molecule Origin Isomer Price (US$) Principal producer

β-Carotene Dunaliella All-trans and
9-cis

300–3000/
kg

Cognis Nutrition and Health (Hutt Lagoon and Whyalla, Australia), Cyanotech (Kona, Hawaii, USA), Inner
Mongolia Biological Eng. (Inner Mongolia, China),
Nature Beta Technologies (Eilat, Israel), Tianjin Lantai Biotechnology (Tianjin, China)

Astaxanthin Haematococcus All-trans 3S, 30S 2500/kg Cyanotech (Kona, Hawaii, USA), Mera Pharmaceuticals (Kailua-Kona, Hawaii, USA), Bioreal (Kihei, Hawaii,
USA), Parry’s Pharmaceuticals (Chennai, India),
Algatech (Kibbutz Ketura, Israel) Phaffia yeast 3 R, 30R DSM (Heerlen, The Netherlands)

Table 9
High-value products from microalgae [59].

Product name Price (US$) Distributor

R-phycoerythrin 3.25–14/mg Cyanotech
Allophycocyanin 6–17/mg Cyanotech
Streptavidin: B-phycoerythrin 145/mg Martek
Goat anti-mouse IgG: R-phycoerythrin 165/mg Martek
Sensilight PBXL1: Anti-GST 1500/mg Martek
Mixed fatty acids 60/g Spectra stable isotopes
13C-mixed free fatty acids 200/g Spectra stable isotopes
13C-DHA (495%) 38,000/g Spectra stable isotopes
15N-alanine 260/g Spectra stable isotopes
2H7, 13C, 15N4-arginine 5900/g Spectra stable isotopes
dATP-CN 26,000/g Spectra stable isotopes
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shrimp or copepods), which in turn are consumed by fish larvae
[180,185,186]. The algal species are commonly cultured for aqua-
culture feed, which include Skeletonema, Chaetoceros, Isochrysis,
Dunaliella, Phaeodactylum, Navicula, Pavlova, Amphora, Nanno-
chloropsis, Cyclotella, Tetraselmis, Nitzschia and Chlorella [187–189].

Isochrysis galbana and Tetraselmis suecica are considered the
best food for larval bivalves, growing much better in unfiltered
seawater to which these algae have been added. Drum-fried Sce-
nedesmus can be used as Artemia food and Chlorella (marine,
freshwater, or dried) is well suited for the rotifer Brachionus pli-
catilis cultivation [185]. The cost of producing dry algal biomass
feed, in Australia, varies from US$80/kg to US$800/kg [57,59].
Other cost estimates have given costs between US$50/kg to US
$150/kg with a peak value of US$1000/kg [47]. In fact, 30% of the
current world algal production is sold for animal feed applications
[190] and over 50% of the current world production of Arthrospira
is used as feed supplement [165]. In order to be used in aqua-
culture, a microalgal strain has to meet various criteria. It has to be
easily cultured and nontoxic. It should also have the correct size
and shape to be ingested and should have high nutritional quali-
ties and a digestible cell wall to make nutrients available [191,192].

Although algae are an important part of any aquaculture facil-
ity, the reliability of the algal supply is a major problem in
attaining a profitable operation [186]. If there is an interruption in
the supply of algae, the entire food chain could be broken,
resulting in loss of fish larvae and eventually decreased production
of adult fish. This need for reliability to support zooplankton and
larvae has led to a number of different designs for algal culturing
systems, ranging from ponds to tanks and to sophisticated photo
bioreactors [186,193–195]. Photo bioreactors are generally
designed and constructed with input from engineers as well as
biologists, so they can be very efficient in growing algae.

While microalgae provide food for zooplanktons, they also help
to stabilize and improve the quality of the culture medium. Indeed,
for numerous freshwater and seawater animal species, the intro-
duction of phytoplanktons to rearing ponds (green-water techni-
que) leads to much better results in terms of survival, growth and
transformation index than that of the clear-water technique [196–
198]. The reasons for this are not entirely known, but may include
[186,199] water quality improvement and stabilization by algal
oxygen production and pH stabilization, the action of some
excreted biochemical compounds along with the induction of
behavioral processes like initial prey catching and the regulation of
bacterial population have probiotic effects [200] and the stimula-
tion of immunity [59].

Another challenge for aquaculture that is being addressed by
phycologists is improvement of larval nutrition to achieve higher
larval survival rates [201]. Given the substantial cost of main-
taining the food chain for larvae, any increase in larval survival can
have a significant impact on the economics of an aquaculture
facility. Improving the nutritional properties of the rotifers and
Artemia by feeding them more nutritionally balanced algae is a
simple way to improve larval nutrition [202]. Protein content is a
major factor determining the nutritional value of microalgae. In
addition, highly unsaturated fatty acid (e.g., eicosapentaenoic acid
(EPA), arachidonic acid (AA) and docosahexaenoic acid (DHA))
content is of major importance [203]. Most of the researchers have
focused on the importance of polyunsaturated fatty acids in larval
growth and development [189,204,205]. In particular, DHA, EPA
and more recently AA have been recognized as important nutri-
ents for larvae [206,207]. Schizochytrium, Crypthecodinium and
other algae that contain high levels of DHA have been used as a
source of DHA for the aquaculture food chain [205,208]. Schi-
zochytrium has been shown to enrich and boost the fatty acid and
DHA content in rotifers and Artemia and to improve larval growth
[205]. In addition, EPA is recognized as an important fatty acid in
larval nutrition and the ratio of DHA/EPA is critical for larval
development [201]. Recently, AA is also receiving attention as a
potentially important nutrient for larval nutrition and it is possible
that the ratio of these three fatty acids might be more important
than their absolute levels [62,207]. Indeed, some fatty acids are
essential for many marine animals [209] and similar requirements
exist for the growth and metamorphosis of many larvae [190,210].
Microalgal vitamin content also has to be taken into account as it
may be equally important [165,191].

Alterations in pigmentation can also be an important criteria
for organisms grown in culture because they can affect commercial
acceptability. Artificial diets typically lack the natural sources of
pigments, that give organisms, such as, salmon, and trout their
characteristic coloration. As a result, the carotenoid astaxanthin is
used as a supplement feed [211]. In the natural food chain, algae
are the primary source of astaxanthin and other pigments. For
artificial diets, synthetic sources are commonly used because of
reduced costs. The algae Hematococcus has been found to be an
abundant producer of astaxanthin [212] and several companies
have successfully commercialized Hematococcus as a source of
natural astaxanthin for animal feeds [213,214]. In fact, microalgal
astaxanthin has been approved in Japan and Canada as a pigment
in salmonid feeds [215]. Feeds including 5% to 20% Arthrospira
(rich in carotene pigments), which enhance the red and the yellow
patterns in carp, while leaving a brilliant white color. This clarity
and color definition increases their value (Resource center for
Spirulina and microalgae; official web page, 2005 [216]). Another
example is the traditional French technique called the greening of
oysters. It consists of creating a blue-green color on the gills and



T. Suganya et al. / Renewable and Sustainable Energy Reviews 55 (2016) 909–941 927
labial palps of oysters using the diatom Haslea ostrearia. This
increases the product’s market value by 40% [199].

The main applications for algal biomass in aquaculture are: fish
feed [180] including larval nutrition for molluscs or peneid shrimp
[199]; coloring for farmed salmonids [199]; stabilization and
improvement of quality of culture medium (‘green-water’ technique)
[196]; inducement of essential biological activities in bred aquatic
species [199] and enhancement of the immune systems of fish [217].

5.1.1.2.2. Animal feed (pets and farming). Many nutritional and
toxicological evaluations have proved the suitability of algal bio-
mass as feed supplements [146]. Arthrospira is largely used in this
domain and concerns many types of animals: cats, dogs, aquarium
fish, ornamental birds, horses, cows and breeding bulls. Algae
positively affect the physiology (by providing a large profile of
natural vitamins, minerals and essential fatty acids, improved
immune response and fertility, better weight control) and their
external appearance (resulting in healthy skin and a lustrous coat)
of animals [218].

In poultry rations, algae up to a level of 5–10% can be used
safely as a partial replacement for conventional proteins. The
yellow color of broiler skin and shanks as well as the egg yolk, is
the most important characteristic that can be influenced by
feeding algae [146].

5.1.2. Bioactive compounds
5.1.2.1. Fatty acids. Microalgae, especially marine microalgae, are
also excellent sources of polyunsaturated fatty acids such as lino-
lenic acid, AA, EPA and DHA [219,220]. These essential fatty acids
are important for the treatment and prevention of a range of
diseases and also important in human nutrition [221,222]. Algal
species can be selected for the preponderance of a particular fatty
acid and the content of these fatty acids can be manipulated by
changing the culture conditions [223,224].

Certain microalgae produce large quantities of oils and fats
containing long-chain omega-3 and omega-6 fatty acids (LC-
PUFA). LC-PUFA are long-chain polyunsaturated fatty acids ('LC-
PUFA), such as DHA and EPA [225]. LC-PUFA are essential to
human nutrition and health and recent studies have indicated that
certain of these LC-PUFA may be associated with physical, mental
and visual development in infants [226]. In addition, omega-3
fatty acids are a part of a healthy diet that helps to lower the risks
of diseases and include cardiovascular disease, various cancers,
arthritis and dementia [227].

A number of algal groups have been identified that produce
high levels of LC-PUFA, including diatoms, chrysophytes, crypto-
phytes, dinoflagellates and others [228,229]. Table 7 represents the
predominant PUFA from different microalgal species [59].

DHA omega-3 LC-PUFA has 22 carbon atoms and 6 methylene-
interrupted cis-double bonds (22:6). It is a dominant fatty acid in
neurological tissue, constituting 20–25% of the total fatty acids in
the gray matter of the human brain and 50–60% in retina rod outer
segments. It is also abundant in heart muscle tissue and sperm
cells [230–232]. Humans are not capable of synthesizing DHA de
novo and their capacity to synthesize DHA from its precursor, a
linolenic acid, is relatively poor. Thus, adequate supplies of DHA
must be obtained from dietary sources [233].

DHA is the predominant structural fatty acid in the gray matter
of the brain and retina and must be supplied, preformed, in the
diet; particularly it is important for correct brain and eye devel-
opment in infants. It is essential for the proper functioning of
brains and has been shown to support cardiovascular health in
adults [234,235]. Microalgae such as Crypthecodinium cohnii (40–
50% DHA but negligible EPA), Schizochytrium (40% DHA, 17% doc-
osapentaenoic acid) and Ulkenia sp. are well suited for the pro-
duction of DHA [59,236].
The dino-flagellate Crypthecodinium cohnii can produce most of
its fatty acid as DHA [229] with no other detectable LCPUFA, such
as EPA or ARA. From 1990 onwards, a number of health and
nutrition organizations specifically recommended the inclusion of
DHA in infant formula for pre term and full term infants. The
world wholesale market for infant formula is now estimated to be
about US$10 billion per annum [235]. Martek’s DHA oil for this
application (DHASCO; Martek, Columbia, MD, USA) comes from C.
cohnii and contains 40–50% DHA but no EPA or any other long-
chain PUFAs [235,237,238]. DHA oil produced from C. cohnii is
currently available worldwide (including Europe, Australia, Asia
and the Middle East) [239].

DHA are also produced commercially from Schizochytrium and
these are mainly used for adult dietary supplements (including
cheese, yogurt, spreads, dressings, cereals) and foods for pregnant
and nursing women [59]. Moreover, OmegaTech (USA), also owned
by Martek, exploits Schizochytrium to produce a low-cost oil for-
merly known as DHA Gold [238]. The oil is currently used as an
adult dietary supplement in food and beverages, health foods,
animal feeds and maricultural products. Finally, the Nutrinova
process (Frankfurt, Germany) uses Ulkenia sp. which grows in 80-
m3 fermenters. The oil is sold under the name of DHActive [238].

A number of algae have been proposed for the production of
EPA, including Nitzschia sp. [240], Nannochloropsis [223], Navicula
sp. [241], Phaeodactylum [242] and Porphyridium [243]. In addition,
EPA is a LCPUFA, but with 20 carbons and 5 double bonds (20:5).
Changes in EPA levels can significantly change an individual’s
coronary vascular status because the products of EPA metabolism
are eicosanoids with antithrombotic and antiaggregatory effects
[231]. A process for producing high-purity EPA, another omega-3
fatty acid (20:5), from Phaeodactylum tricornutum has been
developed by the University of Almeria in Spain. An economic
analysis, on a potential facility producing 430 kg 96% pure EPA per
year, estimated the total cost of production at US$4602/kg, with
60% of the cost arising from the recovery process and 40% from the
biomass production. It is believed that the cost needs to

be reduced by 80% to be economically viable. The residual
biomass following the extraction of the EPA contains high amount
of residual solvent to be sold for animal feed and therefore must
be incinerated [244]. The annual worldwide demand of EPA is
300 t [60].

Algae can also serve as a source of genes involved in PUFA
synthesis. Once the genes are isolated and characterized, they
could be evaluated for suitability for transfer into other organisms,
such as higher plants [245].

In addition, new algal sources for the very long chain n-3
polyunsaturated fatty acids (VLCPUFA) (418 C) are being exam-
ined. These include the production of EPA in Glossomastix chryso-
plasta [246] and screening of different strains of Thraustochytrium
sp. for optimization of n-3 VLCPUFA production [247].

Harwood and Guschina [248] introduced the major cellular
lipids and their fatty acids and also described how the PUFAs are
synthesized. The discovery of different elongases and desaturases
important for PUFA production and their application for bio-
technology was detailed. Finally, the potential for algae in com-
mercial applications was discussed, particularly in relation to the
production of very long chain PUFAs and biofuel [248].

5.1.2.2. Carotenoids. Algae contain carotenoids, (yellow, orange or
red pigments) that include the nutritional and therapeutic values,
which are due to their ability to act as provitamin A, that can
inturn be converted into vitamin A [249–251]. Carotenoids such as
β-carotene and fucoxanthin also have anti-tumor and cancer pre-
ventive activity [252,253]. Moreover, carotenoids have intrinsic
anti-inflammatory properties owing to their quenching action on
relative oxygen species and a therapeutic chemo preventive



Fig. 11. Chemical structures of microalgal pigments. (a) β-Carotene,
(b) Astaxanthin, (c) Phycoerythrin (in phycocyanin, the CH¼CH2 group noted an
asterisk is replaced by CH3–CH2) [59].
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anticancer effect is sometimes attributed to these molecules
[250,254,255]. The carotenoids are widely used as food colorants
and supplements for human and animal feeds (poultry, fish)
[57,59]. Carotenoids also have applications in cosmetics [255].
Among 400 known carotenoids, only a very few are used com-
mercially (β-carotene, astaxanthin) (Table 8) and, others are of
lesser importance (lutein, zeaxanthin, lycopene and bixin)
[255,176]. The structures of β-carotene, astaxanthin are presented
in Fig. 11a and b [59].

5.1.2.2.1. β-Carotene. The average concentration of carotenoids
in most algae is only 0.1–2%, but Dunaliella when grown under the
right conditions of high salinity and light intensity will produce up
to 14% β-carotene [29,57,59,60,172]. Dunaliella is, therefore, well
suited for the commercial production of β-carotene and several
industrial production plants are in operation around the world
including Australia, Israel, USA and China [59]. It can be cultivated
outdoors in open ponds owing to the extreme conditions under
which it grows (hypersaline, low availability of nitrogen and high
levels of solar radiation) [249,256].

The major producer of β-carotene is Cognis Nutrition and
Health, whose farms cover 800 ha in Western Australia, Whyalla
and South Australia [257]. Three categories of products which are
derived from D. salina are: β-carotene extracts, Dunaliella powder
for human use and dried Dunaliella for feed use. The prices of
these products in 2004 varied from US$300 to US$3000/kg
[59,258,259]. It has been reported that β-carotene from Dunaliella
is a substantial growing industry and its commercial utilization is
economically viable [60,28].

5.1.2.2.2. Astaxanthin. Astaxanthin is another carotenoid that
can be derived from algae and is principally used in pharmaceu-
ticals, cosmetics, nutraceuticals, agriculture and animal nutrition
[260–263]. It is a potent antioxidant [264] and has possible roles in
human health such as UV-light protection, immune enhancement,
hormone precursor, pro-vitamin A source and for anti-
inflammation [215]. It is also a strong coloring agent, with uses
for coloring muscles in fish [217]. The annual worldwide aqua-
culture market for this pigment in 2004 was estimated to be US
$200 million with an average price of US$2500/kg [265]. Astax-
anthin can be produced by Haematococcus, a freshwater alga that
normally grows in puddles, birdbaths and other shallow fresh
water depressions [212,266]. Haematococcus contains up to 3%
astaxanthin, but it requires a two stage culture process, which is
not suited to open pond cultivation. The first stage of the process is
designed to optimize algal biomass (green-thin walled flagellated
stage with optimum growth at a temperature of 22–25 °C) and the
second stage (thick walled resting stage) under intense light and
nutrient poor conditions during which astaxanthin is produced
[59,172].

Natural astaxanthin is preferred, for example in carp, chicken
and red sea bream diets, due to enhanced natural pigment
deposition, regulatory requirements and consumer demand for
natural products [59,267].

Commercial production is being carried out in Hawaii, India
and Israel, where Algatech sell a crushed Haematococcus biomass
on the pharmaceutical market [59,172,268]. Cyanotech, in Hawaii
claimed a market share of over 95% of the animal nutrition market
for algae-based astaxanthin products [269]. Moreover, since the
1990’s, human nutraceuticals have appeared as a new market
possibility [254,264] and Algatech (Kibbutz Ketura, Israel) sells its
product (crushed Haematococcus biomass rich in astaxanthin) in
the pharmaceutical market [59].

5.1.2.2.3. Lutein. Lutein is a xanthophyll and one of the natu-
rally available carotenoids. Muriellopsis sp. a microalgae, that is
able to accumulate high levels of carotenoids, such as lutein, that is
used for the prevention and treatment of degenerative diseases
[51]. The lutein market is segmented into pharmaceutical, nutra-
ceutical, food, pet foods and animal and fish feed. The pharma-
ceutical market is estimated to be around US$190 million, nutra-
ceutical and food is estimated to be around US$110 million. Pet
foods and other applications are estimated to be US$175 million
annually. Apart from the customary age-related macular degen-
eration applications, newer applications are emerging in cos-
metics, skins and as an antioxidant. It is one of the fastest growing
areas in the US$2 billion carotenoid market.

5.1.2.3. Other bioactive compounds. Microalgae contain several
different types of sterols, including clionasterol, isolated from
Spirulina sp., which are shown to increase the production of
plaminogen-activating factor in vascular endothelial cells and thus
facilitate cardiovascular disease prevention [173]. Additionally,
several antioxidants’ compounds (e.g. dimethylsulfoniopropionate,
mycosporines or mycosporinelike amino acids) have been isolated
from microalgal sources, having the potential to protect against
oxidative stress, a wide spectrum of diseases and ageing [43].

5.1.3. Fluorescent pigment
Pigments present in algal photosynthetic systems are being

utilized for commercial applications [270]. The most widely used
are the phycobiliproteins. Phycobiliproteins are a family of light-
harvesting macromolecules that function as components of the
photosynthetic apparatus in cyanobacteria and several groups of
eukaryotic algae, including the red algae, cryptomonads and
glaucophytes [271,272]. They are deeply colored (red or blue),
water soluble, complex, proteinaceous compounds. These algae
pigments have the potential as natural colorants for food, cos-
metics and pharmaceuticals. Their main function is to trap light
energy in the 495–650-nm wavelength range and transfer it to chl
a of the photosynthetic reaction centers.

Phycobiliproteins can be divided into three major groups based
on their spectral properties [62]:

i. phycoerythrin (PE) Amax¼560 nm, emission¼580;
ii. phycocyanin (PC) Amax¼620 nm, emission¼650;
iii. allophycocyanin (APC) Amax¼650 nm, emission¼660 nm.

Each of the different phycobiliproteins assemble into high-
molecular-mass complexes composed of two non-identical poly-
peptide subunits (α and β) (Fig. 11c) [59]. The number of
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chromophores present in these complexes range from 6 to 34 and
these complexes have extremely high absorbance coefficients.
When excited with light energy at the maximal absorbance,
greater than 90% of the absorbed energy can be emitted as fluor-
escence [272].

Many characteristics make phycobiliproteins well suited for
commercial applications: (1) they have large numbers of chro-
mophores and high quantum yields, (2) they are capable of large
Stokes shifts (displacement of absorption and emission wave-
lengths) with the fluorescence emission at wavelengths with
minimal auto fluorescence from biological materials, (3) they form
very stable conjugates with many materials, (4) they are fully
water soluble and (5) they can be efficiently excited by argon or
helium–neon lasers [62]. The ability to form stable conjugates
with antibodies, strepavidin, biotin and so on are especially
important for developing valuable applications for the phycobili-
proteins. This allows the phycobiliproteins to function as fluor-
escent tags for labeling highly specific probes to identify cell types
or proteins [273]. Some of the more significant applications are in
flow cytometry and fluorescence-activated cell sorting. In these
applications, PE is 20 times brighter on a molar ratio than on a
fluorescein isothiocyanate and provides an important additional
color for multicolor detection systems in conjunction with other
fluorescent pigments. In addition, APC is a significant pigment for
flow cytometry applications. Biliproteins have also been widely
used in immune-histochemistry [61].

Phycobiliprotein complexes assemble into extremely large
macromolecular complexes called phycobilisomes [272]. Phycobi-
lisomes are unstable in low salt buffer and at dilute protein con-
centrations. Recently, methods have been developed to stabilize
the phycobilisomes, by chemical crosslinking [274]. Stabilized
phycobilisomes have the same advantages as individual bilipro-
teins do but contain up to 1400 chromophores, making them the
most powerful fluorescent pigments, currently available on a per-
binding-event basis. They have broad wavelength adsorption
characteristics, with the prominent absorption peaks corre-
sponding to each of the phycobiliproteins present. This is well
suited for excitation by both argon and helium-neon lasers. They
can also have extraordinary Stokes shift of up to 178 nm. The
emission wavelength of approximately 670 nm provides minimal
overlap with mammalian cell auto-fluorescence. They are easily
conjugated to the same materials as the individual biliproteins,
which include antibodies, peptides, streptavidin, biotin and DNA.
Stabilized phycobilisomes are commercially available as secondary
labels for a variety of uses.

Phycobilisomes are well suited for direct fluorescent detection
in immunoblots, in which they are capable of detecting sub-
picogram levels of protein [275]. In microplate immunoassays,
phycobilisomes are capable of detecting 40-femtomolar levels of
antigenic protein, with a linear assay range of four orders of
magnitude [276]. For use in flow cytometry, they are five-fold
brighter than PE and thus well suited for detection of low density
cell surface markers, which were previously undetectable through
conventional fluors.

Phycoiliproteins from cryptomonads, which provide unique
absorption and emission characteristics [277] along with relatively
low molecular mass (o50 kDa), are also commercially available.
These have possible applications for use as intracellular markers or
in cases, in which specialized absorption and emission require-
ments are desired.

Dino flagellates also produce a pigment, that has found limited
application as an additional color in flow cytometry [278]. The
peridinin chlorophyll proteins are water-soluble pigments con-
taining carotenoids and chl a.

Dainippon Ink and Chemicals produce a blue food colorant from
Spirulina, called Lina blue, that is used in chewing gum, ice slush,
sweets, soft drinks, dairy products and wasabi [47,59,279]. Phyco-
biliproteins can be commercially produced from Spirulina and the
red microalgae Porphyridium and Rhodella [57,59,60,172]. In 1997,
the global market for Phycobiliproteins colorants was estimated at
US$50 million and prices vary from US$3 to US$25/mg [59].

5.1.4. Stable-isotope biochemicals
Microalgae are ideally suited as sources of stable isotopically

labeled compounds. They are easily handled and cultured and
their ability to perform photosynthesis allows them to incorporate
13C, 15N and 2H from relatively inexpensive inorganic compounds
(i.e. 13CO2, 15NO3 and 2H2O) into more highly valued organic
compounds [62]. For unicellular microalgae, each cell is exposed to
the isotope, resulting in uniform labeling of compounds. Closed
photobioreactor systems make it possible to have a very high
conversion of 13CO2 into biomass, thus minimizing the cost asso-
ciated with producing 13C labeled substrates. Microalgae are
metabolically very flexible and can be made to overproduce a
variety of different products through simple manipulations of the
culture environment [229,280,281].

One application for algal-produced stable isotopically labeled
complex organic compounds is forming the basis of culture media
of bacteria, yeast and mammalian cells. Stable isotopes provided in
the media are incorporated into cellular components and, in par-
ticular, proteins. Proteins of interest can be produced in large
quantity using molecular technology. It is coupled with recent
developments in multidimensional NMR technology and stable-
isotope-editing techniques [282]. These techniques are also used
to determine the primary, secondary and tertiary structures of
small and medium-sized proteins [283,284]. Structural informa-
tion can be used to predict the interactions of substrates with the
active sites of proteins and to detect the specific site which is used
to alter biological activity of the protein [285,286].

Two commonly used stable isotopically labeled compounds
for cell culture are glucose and glycerol. Many algae (especially
chlorophytes) are known to accumulate high levels of glucose in
the form of starch [280]. When these organisms are grown in the
presence of 13CO2, they will produce labeled starch that can be
easily hydrolyzed and purified as crystalline 13C-glucose. Simi-
larly, Dunaliella produces high levels of glycerol and has been
used for 13C-glycerol production. In addition to the use of glucose
and glycerol as cell culture nutrients, other stable isotopically
labeled compounds derived from algae are being used to study
macromolecular interactions and the elucidation of metabolic
pathways [62]. For example, 13C glucose has been included in
growth media, enabling the algae to produce 13C-DHA-containing
triglyceride, which is used to study the metabolism and turnover
of DHA [287].

Algal-derived stable isotopically labeled compounds have also
been used as metabolic tracers to elucidate various metabolic
pathways [288,289]; 13C-palmitic acid has been used to measure
palmitic acid flux in the blood [290] and labeled galactose has
been used to follow carbohydrate metabolism in the liver [289]. A
variety of labeled fatty acids has been used to monitor fatty acid
metabolism. For example, 13C-labeled linoleic acid and linolenic
acid have been useful in studying the synthesis of polyunsaturated
fatty acids in infants [291].

Breath tests for the diagnosis of medical disease and dysfunc-
tion represent another application for the use of microalgal-
derived stable isotopically labeled products. A breath test is sim-
ply the determination and quantitation of the compounds in
human breath. The principle of these tests is that a substrate
labeled with 13C is ingested, absorbed from the small intestine and
ultimately metabolized to carbon dioxide. The magnitude and the
rate of the appearance of 13CO2 in the exhaled breath is used to
diagnose the subject’s physiological state. Several different



Table 10
Antibacterial and antifungal substances identified from micro algae [311].

S. no. Antibacterial and antifungal substances References

1. Fatty acids [312–313]
2. Glycolipids [314]
3. Acrylic acid [315]
4. Phenolics [316]
5. Bromophenols [317]
6. Terpenoids, carbohydrates [314,318]
7. N-glycosides [319]
8. Peptides [320]
9. Polysaccharides [321–322]

10. Acrolyl-choline [323]
11. Acrolyl-diketone [324]
12. Isonitrile (indole alkaloids such as haploindole) [325]
13. Nodularin, goniautoxin, saxitoxin, okadaic acid and

ciguatoxin
[326–329]
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approaches to measure 13CO2 have been developed. These include
the use of isotope ratio-mass spectrometry, infrared spectroscopy
and laser-based systems [292].

Several Chlamydomonas sp. are known to produce high levels of a
galactose containing polysaccharides [229], which can be hydrolyzed
to produce monosaccharides; 13C-galactose has been used to measure
liver function [229,293,294] and its non-invasive nature gives it an
advantage over liver biopsy. In addition, 13C-xylose has been produced
from Chlamydomonas, which can produce nearly 25% of its biomass
as xylose; 13C-xylose has been used to diagnose bacterial overgrowth
of the small intestine [295] because xylose is poorly absorbed from
the small intestine and is metabolized largely by colonic microflora.

Finally, 13C-labeled mixed triglycerides (known as Hiolein)
have been produced from Neochloris and used to diagnose fat
malabsorption [296]. Hiolein is a triglyceride oil, that contains
over 50% oleic acid and it is functionally equivalent to other tri-
glycerides that have been used as breath test substrates
[297,298]. Market value of stable-isotope compounds from algae
is probably higher than US$13 million/year [59]. Spectra Stable
Isotopes (Columbia, MD, USA), a division of Spectra gases (part of
Cambridge Isotope Laboratories) sells its marked amino acids at
prices in the range from US$260/g to US$5900/g and its marked
nucleic acids at about US$28/mg [59,299]. Moreover, it has
recently developed a process for the autotrophic production of
labeled PUFAs from microalgae using 13CO2, in which 13CO2 is
directly sparged into the culture as required. Thus, the carbon
loss is high and there is a low efficiency of labeled carbon use. In
spite of these considerations, this company is manufacturing
more than 400 g per year of labeled fatty acids at US$38,000/g
[62,300] (Table 9).

5.1.5. Drug screening
Algae are a very diverse group of organisms, that occupy a wide

variety of ecological niches. As such, they have the potential to be a
rich source of bioactive compounds.

A large number of bioactivities have been reported in algae,
including anticancer, antimicrobial, anti-HIV, antiviral and various
neurological activities [301–305]. Some species of blue green algae
and dinoflagellates can produce highly potent toxins [303]. For
example, the microcystins are a group of circular peptides pro-
duced by blue green algae and some of the more potent deriva-
tives have an LD50 of 50 mg/kg [306]. Saxitoxin and the breve-
toxins are produced by dinoflagellates and each has significant
bioactive effects on humans and fish [307]. Table 9 presents the
high value bioproducts from microalgae.

In addition to toxins, many other bioactive compounds have
been found in algae [301,302,304]. The National Cancer Institute
(NCI) demonstrated that algal-sulfolipids had in vitro activity
against the HIV virus [308]. More recently, NCI discovered cya-
novirin from the blue-green alga Nostoc ellipsosporum [309]. This
compound is a low-molecular-weight protein that can be pro-
duced as a recombinant molecule in E. coli. Cyanovirin irreversibly
inactivates HIV, without adversely affecting the host cells [62].

5.1.5.1. Antimicrobial agents from microalgae. A large number of
microalgal extracts and/or extracellular products have been found
to have antimicrobial (antibacterial, antifungal, antialgal, anti-
protozooal) activity [310]. Table 10 represents the antibacterial and
antifungal substances identified from microalgae [311–329].

Microalgae antimicrobial compounds serve as useful leads to
new synthetic antibiotics or may find application in agriculture.
For example, the tjipanazoles, isolated from the cyanobacterium,
Tolypothrix tjipanensis, are indolo (2,3-a) carbazoles, similar to
those found in actinomycetes and slime molds, but without a
pyrrolo (3,4-c) ring [319]. They show little cytotoxicity and no
in vivo activity against Candida albicans, however tjipanazole Al
and A2 show appreciable fungicidal activity against rice blast and
leaf rust wheat infections.

Other algal toxins may also be of interest in environmental
management. For example, the algacides produced by some cya-
nobacteria, such as the y-lactone, cyanobacterin, produced by
Scytonema hofmanni [330], fischerellin from Fischerella muscicola
[331] and an unidentified extracellular product of an Oscillatoria
sp. [332–333] may find use in the control of algal blooms. Cya-
nobacteria have also been patented as a herbicide [330].

5.1.5.2. Antiviral activity of microalgae. A number of cyanobacteria
and very few other microalgae, have been screened for antiviral
activity [334]. For example, Rinehart et al. [335] have found that
over 5% of the extracts of cultured cyanobacteria screened by them
showed antiviral activity against Herpes simplex virus type II and
45% had activity against respiratory syncytial virus. Lau et al.
[336] have also screened extracts of over 900 strains of cyano-
bacteria for inhibition of reverse transcriptases of avian myelo-
blastosis virus and human immunodeficiency virus type 1 and
they found that over 2% of these algae showed promising activ-
ities. The active compounds have, however, not been identified, yet
with the exception of an anti-AIDS sulfolipid [337].

5.1.5.3. Anticancer activity of microalgae. Amongst the cyano-
bacteria, numerous cytotoxic compounds, some of which have
potential as anticancer drugs have been characterised [334]. These
compounds include tubericidin and toyocamycin [338,339] and
new unique macrolides such as scytophycin B isolated from Scy-
tonema pseudohofmanni. The scytophycins show cytotoxicity
against the KB (a human nasopharyngeal carcinoma) cell line, as
well as moderate activity against murine, intraperitoneally
implanted P388 lymphocytic leukemia and Lewis lung carcinoma
[340,341]. Similar activities have been reported for the scytophy-
cin, tolytoxin, from Tolypothrix conglutinate var. colorata and S.
mirabile [342,343] and for indocarbazoles isolated from Nostoc
[344]. The cytostatic effect of tolytoxin apparently results from an
inhibition action of polymerization, thus disrupting microfilament
organization in eukaryotic cells [345,346]. The acutiphycins from
Oscillatoria acutissima, are another group of macrolides with
cytotoxicity against KB, as well as activity against murine, intra-
peritoneally implanted, Lewis lung carcinoma [347]. Macrolides
with antitumour action have also been isolated from dino-
flagellates; i.e. amphidinolide-A from an Amphidinium sp. [348].
An alternative screen for potential anti-cancer activity, including
protein kinase C, protein tyrosine kinase and inosine monopho-
sphate dehydrogenase has also resulted in a range of compounds
from cyanobacteria, cryptophytes and chrysophytes [349].
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Concordance with the current discussion, Borowitzka [311]
stated that the great biochemical diversity of microalgae makes
them a valuable potential renewable source of new drugs, growth
regulators and other useful chemicals. The author reviewed the
status of microalgae as sources of pharmaceuticals and other
biologically active molecules.

5.1.6. Microalgal recombinant proteins
Recently, tremendous advances have been made in the tools

available to study a variety of algae. Highly sophisticated mole-
cular systems are being used to dissect biological processes in
many cyanobacteria [350]. The cyanobacteria can be readily
transformed with autonomously replicating plasmids and endo-
genous genes can be disrupted by homologous recombination.
Although a number of commercial possibilities have been pro-
posed for recombinant cyanobacteria [351,352], the potential is yet
to be realized.

A novel application of recombinant techniques was to transfer
the cryIVC gene for producing Bt toxin to Synechococcus [353–354].
Cyanobacteria are a food source for mosquito larvae and the Bt
toxin is capable of inhibiting larval development. In principle,
recombinant cyanobacteria could be dispersed in areas of high
mosquito infestation and as the larvae consume the cyanobacteria,
larval development would be inhibited. An attempt is being made
to commercialize cyanobacteria containing Bt toxin [355], but this
venture faces obvious difficulties because of the potential for
widespread dispersal of recombinant organisms that might rapidly
lose their effectiveness because of the development of resistant
larvae.

Advances in eukaryotic algal recombinant techniques have
recently been extensively reviewed [356]. Chlamydomonas has
developed into a sophisticated molecular system that has made
important contributions to the understanding of photosynthetic
processes. Although recombinant Chlamydomonas does not have
direct commercial applications, the technology developed for
Chlamydomonas has provided the direction for the development of
transformation techniques in other algae.

Recently developed transformation techniques for Chlorella
[357] and diatoms [358,359] have potential use in direct com-
mercial applications. At the very least, recombinant techniques in
economically valuable algae provide an important tool for eluci-
dating and understanding the biochemical pathways responsible
for the synthesis of products of interest (e.g. biosynthesis of
PUFAs). At this point, recombinant techniques have not con-
tributed directly to a commercial product. However, with public
and government acceptance of recombinant and continued pro-
gress in developing methodologies for algal systems, significant
contributions could be realized in the near future.

5.1.7. Microalgae in cosmetics
Some microalgal species are used in cosmetics industries,

especially in the skin care market, the main microalgae species are
Arthrospira and Chlorella [360]. Microalgae extracts can be mainly
found in face and skin care products (e.g., anti-aging cream,
refreshing or regenerant care products, emollient and as an anti-
irritant in peelers). Microalgae are also utilized in sun protection
and hair care products.

Examples of commercially available products and their prop-
erties claimed by their companies; 1. A protein-rich extract from
Arthrospira repairs the signs of early skin aging, exerts a tightening
effect and prevents stria formation (Protulines, Exsymol S.A.M.,
Monaco); 2. An extract from C. vulgaris stimulates collagen
synthesis in skin, thereby supporting tissue regeneration and
wrinkle reduction (Dermochlorella, Codif, St. Malo, France).

Recently, two new products have been launched by Penta-
pharm (Basel, Switzerland): 1. An ingredient from Nannochloropsis
oculata with excellent skin-tightening properties (short and long-
term effects) (Pepha-Tight); 2. An ingredient from D. salina, which
shows the ability to markedly stimulate cell proliferation and
turnover and to positively influence the energy metabolism of skin
(Pepha-Ctive) [360].

5.1.8. Microalgae role as biofertilizer
Pyrolysis is the conversion of biomass to bio-oil, syngas and

charcoal at medium to high temperatures (350–700 °C) in the
absence of air [74]. This conversion process leads to the formation
of the solid charcoal residue called ‘‘biochar’’ from algae, that has
potential agricultural applications as a biofertilizer and for carbon
sequestration [361]. Biochar can also be utilized as process fuel in
bioenergy conversion. It is considered a long-term sink in carbon
sequestration process, which could be used to reduce carbon
dioxide emissions by up to 84%. This biochar sequestration offers
the potential to produce a carbon-negative biofuel [362].

5.2. Commercial applications of macroalgae

The use of macroalgae as a potential source of high value
chemicals and in therapeutic purpose has engrossed its commer-
cial interest on macroalgae. Recently, macroalgae have been used
as a novel food with potential nutritional benefits and in industry
and medicine for various purposes. Furthermore, macroalgae have
shown to provide a rich source of natural bioactive compounds
with antiviral, antifungal, antibacterial, antioxidant, anti-inflam-
matory, hypercholesterolemia and hypolipidemic and anti-
neoplasteic properties. Thus, there is a growing interest in the area
of research on the positive effect of macroalgae on human health
and other benefits [363].

Macroalgae have mainly been used as a raw material to extract
alginates (from brown algae), agar and carragenates (from red
algae). Moreover, algae also contain multitude of bioactive com-
pounds (phenolic compounds, alkaloids, plant acids, terpenoids
and glycosides) that have antioxidant, antibacterial, antiviral,
anticarcinogenic, etc. properties [364]. Primarily brown algae, the
largest and most conspicuous of the macroalgae and red algae, has
a diverse algal group.

5.2.1. Foods from macroalgae
The major foods derived from macroalgae are illustrated in

Table 11 [44,365]. The algal biomass for these products is derived
from wild, managed, or cultivated stands of macroalgae that
undergo a minor processing after harvest. In these cases, the
product is the biomass itself, rather than chemicals extracted from
the algae. The post-harvest processing serves only to clean and
preserve the intrinsic character of the algae.

5.2.1.1. Nori. The major algal product in the world today is nori, the
algal blade (called a thallus) of certain species of the red macro-
algae Porphyra. Nori is a primary constituent of “SUSHI”, a Japa-
nese food item that is becoming increasingly popular in the West.
The methods employed in the harvesting and drying of the sea-
weed are often small scale, traditional and primitive [366]. In the
case of nori, however, modern techniques introduced in the 1960s
have provided the means to rapidly increase the production yields
[367]. Nori cultivation is a type of farming, in which seed like
propagules, called conchospores, are seeded onto nori nets, which
are hung in sheltered ocean areas. Before the mid 1960s, nori
cultivation was limited to shallow, sandy bays, where the nori nets
could be hung between poles stuck in the bottom. After this time,
the nets were often attached to surface buoys, so that deeper
water could be used for cultivation. Around 1970, a system was
developed to raise the nets out of the water, which allowed the
controlled drying and temporary storage of the porphyra thalli.



Table 11
Commercial Products from macroalgae [49].

Product Use Market value (million
$US)

Nori Food 1800
Wakame Food 600
Kombu Food 600
Alginates i. Food products

ii. Paper products
iii. Biomedical applications

230

Carrageenans i. Food products
ii. Cosmetics
iii. Pharmaceutical products

100

Agars Food products 160
Agarose i. Biomedical applications

ii. Biotechnology applications
450

Sea weed meal Animal feed 5
Manure (“Maerl”) Agriculture 10
Liquid fertilizer Agriculture 5
Phycobili proteins i. Biomedical applications

ii. Biotechnology applications
2
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These sophisticated growth systems and procedures, coupled with
fast growing cultivation forms and mechanized methods for pro-
cessing, have provided ample production capacity and nori supply
has recently exceeded demand [367]. Many nori products are
available; of these, toasted nori sheets are the largest product
segment. With a market value of approximately $2 billion and a
product volume of 40,000 t per year [365], nori represents the
most successful algal product group now. Although nori is pri-
marily consumed in Japan, Korea and China, sales in other coun-
tries are rapidly increasing US sales in 1991, were estimated to be
$20- $25 million [368].

5.2.1.2. Wakame. Another major algal food product is wakame, a
group of related foods derived from a brown alga known as
Undaria pinnatifida. This macroalgal product has been cultivated
commercially since the middle of 1950s [369]. Similar to nori,
wakame is produced mainly in Japan, Korea and China. Wakame is
more extensively processed after harvest than most other mac-
roalgal biomass products. The most popular wakame product is
boiled and salted, which results in the green product most pre-
ferred by consumers. As with nori, the primary market for wakame
products is Japan, where it is available in many forms (e.g., salted
or dried cut) and is used as an ingredient in soups, salads and
noodles. As of 1990, in the region of 20,000 t, with a market value
of $600 million, were sold annually [49].

5.2.1.3. Kombu. The third major algal food product group is kombu,
which is derived from Laminaria japonica and related species of
brown macroalgae. These algae are collected during the summer,
dried naturally and then boiled. A variety of kombu products are
produced, which can be served with meat, fish, or soups or as a
vegetable [370]. The annual market for these products is around
$600 million.

5.2.1.4. Other macroalgal foods. Many other macroalgae are also
used for human consumption as nutritious food items. For exam-
ple, the red macroalga Palmaria palmata, known as “Dulse”, has
been consumed by shoreline populations of northwest Europe
since approximately the tenth century [371]. Another dulse, Rho-
dymenia sp., is harvested and consumed in parts of North America,
particularly the Maritime Provinces of Canada [366], where it is
promoted as a sea vegetable.

5.2.2. Industrial products from macroalgae
5.2.2.1. Hydrocolloids. Table 11 summarizes the uses and market
values of the major polysaccharide products derived from mac-
roalgae. These products, also referred to as “hydrocolloids”, make
up the major industrial products derived from algae at the present
time; their combined market value is well over $500 million.
These products are prepared from wild or cultivated bed type
marine macroalgal species (certain species of red and brown
algae).

Carrageenans and agars are obtained from different species of
red algae. Alginates are extracted from brown algae species. Unlike
the food products described above, the macroalgal biomass for
these products undergoes extensive extraction and processing to
yield the final product [372]. The extreme case is agarose, which is
derived from agar (already a processed product) by extensive
separation and purification [373].

5.2.2.1.1. Alginates. The alginates are salts of alginic acid; these
salts and the sodium salts in particular, are also known as algin.
They are polymers composed of D-mannuronic acid and
L-guluronic acid monomers. The sequences and proportions of
these constituents vary with the source of the algin. The major
commercial sources of alginates are brown macroalgae, particu-
larly from Laminaria sp., Macrocystis sp. and Ascophyllum sp.
Alginates are typically recovered from the macroalgal biomass by
extracting the insoluble alginic acid salts with hot alkali reagent
(sodium carbonate). The sodium alginate is then separated from
the insoluble seaweed residue by filtration and purified [374]. The
primary characteristic of alginates is, their ability to form viscous
solutions when dissolved in cold water. Alginates provide thick-
ening, gel-forming, water retaining and suspending properties to
solutions containing them. These features trigger their importance
in food, industrial and biotechnological applications. Approxi-
mately 27,000 t of alginates, with a value of $230 million, were
sold annually in the year of 1990 [365].

5.2.2.1.2. Carrageenans. The carrageenans are a complex group
of polysaccharides derived from red macroalgae. They are made up
of galactose related monomers (a-1,3-D-galactose and P-1,4-3,6-
anhydro-D-galactose) to which sulfate groups are attached. Three
major types of carrageenans, designated kappa, lambda and iota.
They are primarily derived from Eucheuma cottonii, Chondrus
crispus and Eucheuma spinosum. The carrageenans are recovered
from the macroalgal biomass by extraction with hot water. Sub-
sequent processing depends on the characteristics of the product
desired [375]. The carrageenans are commercially used to make
gel, thicken, suspend and stabilize foods and other products.
Approximately 15,500 t of carrageenans, with a value of $100
million, were sold annually at the beginning of this decade [365].

5.2.2.1.3. Agars. The agars are mixtures of polysaccharides
extracted from certain red macroalgae. Their unifying character-
istic is that, they are all composed of galactose related monomers
(D-galactose and 3,6-anhydro-L-galactose). The agars contain
varying amounts of sulfate, pyruvate and methoxy groups, the
content of which vary with the source of the macroalgal biomass
and the subsequent processing procedures. They are derived pri-
marily from species of Gracilaria, Gelidium, Pterocladia, Acantho-
peltis and Ahnfeltia. The agars are usually extracted with hot water.
Subsequent processing steps serve to generate a concentrated fil-
trate, which is allowed to form a gel; this gel is then treated,
dehydrated and milled [376]. The ability of agars to form stable
gels that retain their characteristics under a range of conditions
(e.g., temperature, humidity and chemical milieu) underlies their
value in many applications. In addition to their use in foods, agars
serve as media to grow microorganisms such as bacteria and yeast.
Annual sales of these products are approximately $160 million, on
a volume of 11,000 t, circa 1990 [365].

5.2.2.1.4. Agaroses. The agaroses are highly refined, specialized
macroalgal products, that have played a pivotal role in the bio-
technological revolution [377]. These products are manufactured
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by isolating the less ionic fractions of agar, under highly controlled
conditions, designed to minimize a lot-to-lot variation. The indi-
vidual products are targeted to a variety of unique applications,
each requiring specific quality assurance protocols. The main
applications for the agaroses are in the biotechnology area and
these products are key elements in powerful techniques such as
gene mapping [377]. The value of more than $50 million per
annum is a crude estimate. The unit value of some of these pro-
ducts can be ranging beyond $25,000/kg [49].

5.2.3. Phenolic compounds
Phenolic compounds are secondary metabolites and thus not

directly involved in algal primary processes such as photosynth-
esis, cell division and reproduction. Phenolic compounds are
characterized as stress compounds, it involves chemical protective
mechanisms against biotic factors such as grazing [378,379], set-
tlement of bacteria or other fouling organisms [380,381] and
against abiotic stressors such as UV-radiation [382] and metal
contamination [383,384]. However, some phenolic compounds,
such as phlorotannins in brown seaweeds, also exhibit primary
functions e.g. in growth and the development of the cell wall in
Fucales [385].

Phenolic compounds contain one or more phenolic rings,
which may be halogenated conferring different and often stronger
biological activities [386,387]. Phenolic compounds are present in
most algal groups; bromophenols are common to all major algal
groups (Table 12). To our knowledge, contrary to terrestrial plants,
no flavonoid phenolic compounds such as anthocyanins and fla-
vones have been found in algae.

Bromophenols have been detected in red seaweeds mainly in
Ceramiales (Laurencia sp.) [388,389], and also in Gelidiales [390]
and Corallinales [391]. Bromophenols are also identified in brown
[392] and green [390] seaweeds.
Table 12
Distribution of phenolic compounds in algal groups [425].

Algal group Main class of phenolic
compounds

Examples

Cyanobacteria MAA Asterina-330,euha
minol-glucoside,m

Phenolic pigment Scytonemin [395]
Toxins Microcystin [407]

Rhodophyta Terpenoids Diterpenes, sesqui
Bromophenols 2-Bromophenol, 4

[388–391]
Phenylpropanoid derivatives Tichocarpols [403
Polymerized hydroxycinnamyl
alcohols

Lignin [408]

MAA Asterina-330, myc
ijene [393,394]

Prymnesiophyceae MAA Mycosporine-glyci
Bacillariophyta MAA Mycosporine-glyci

Phenolic pigment Marennine [406]
Dinophyceae MAA Mycosporine-glyci

methyl ester,usuji
Phaeophyceae Phlorotannins Phloroglucinol,phl

eckols,eckstolonol
malol, diphloretho

C6-C4-C6 metabolite Colpol,8,9-dihydro
Meroditerpenoids Plastoquinones,sar
Bromophenols 2-bromophenol, 4

[392]
Raphidophyceae MAA Asterina-330, myc
Chlorophyta: Bromophenols Avrainvilleol,2-bro

bromophenol [390
Chlorophyceae Coumarin 3,6,7-trihydroxyco

Vanillic acid derivative Vanillic acid deriv
Chlorophyta: Trebouxiophyceae MAA Mycosporine-324
Mycosporine-like amino acids (MAA), water-soluble molecules,
are most commonly produced by Cyanobacteria and Rhodophyta,
but they have also been detected in several groups of microalgae
and in Prasiola sp. [393,394]. Additionally, although these obser-
vations are still under debate, there are reports of the presence of
MAA in macroalgae, belonging to other Chlorophyta and Phaeo-
phyceae [394,395].

Phenolic terpenoids have been characterised in brown and red
macroalgae; the former contain meroditerpenoids (plastoqui-
nones, chromanols, chromenes) found almost exclusively in the
Sargassaceae [396]. Red algae contain mainly diterpenes, with
sesquiterpenes present in Rhodomelaceae particularly in Laurencia
sp. [397] and the occurrence of a secondary cyclization forming a
macrolide, which belongs to bromophycolides has been reported
for Callophycus serratus [398]. In Phaeophyceae, the majority of
described phenolic compounds are phlorotannins: polymers of
phloroglucinol such as fucols, fuhalols, phlorethols [399], eckols
and carmalols [400]. They are present only in brown seaweeds but
are widespread amongst them, occurring in greatest abundance in
the Fucales (up to 20% dry weight) [399].

Other non-typical phenolic compounds have been char-
acterised such as colpol in the brown seaweed Colpomenia sinuosa
[402]; tichocarpols (phenylpropanoid derivatives) in the red
macroalga Tichocarpus crinitus [403]; coumarins in green sea-
weeds such as Dasycladus vermicularis [404] and some vanillic acid
derivatives in another green macroalga, Cladophora socialis [405].

A polyphenolic pigment “marennine” in the diatom Haslea
ostrearia responsible for the oyster “greening” [406]; finally
another polyphenolic pigment, scytonemin and phenolic toxins
such as microcystin are produced by some Cyanobacteria
[395,407]. Lignin (polymerized hydroxycinnamyl alcohols) which
commonly occurs in and was previously thought to be restricted
to, vascular land plants has also been discovered in the calcified
intertidal red seaweed Calliarthron cheilosporioides [408].
lothece-362,mycosporine-alanine,mycosporine-glutaminol,mycosporine-gluta-
ycosporine-glycine, palythene, palythinol, porphyra-334, shinorine [393,394]

terpenes; elatol;bromophycolides [397,398]
-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol,2,4,6-tribromophenol

]

osporine-glycine, palythene, palythine, palythinol, porphyra-334,shinorine,usur-

ne, mycosporine-glycine-valine, palythine, porphyra-334,shinorine [393,394]
ne, mycosporine-taurine, palythene, palythine,porphyra-334,shinorine [393,394]

ne, palythene, palythenic acid, palythine, porphyra-334, shinorine, shinorine
rene [393,394]
oroglucinolwithaC20acylsidechain;fucols,fucophlorethols,fuhalols,phlorethols;
,phloroeckol, phlorofucofuroeckol-A, triphlorethol-A, dioxinodehydroeckol;car-
hydroxycarmalol [399–401]
colpol [402]
gaquinoicacid,sargachromanols,chromenederivatives [396]
-bromophenol, 2,4-dibromophenol,2,6-dibromophenol,2,4,6-tribromophenol

osporine-glycine, mycosporine-glycine-valine,shinorine [393,394]
mophenol,4-bromophenol,2,4-dibromophenol,2,6-dibromophenol,2,4,6-tri-
]
umarin [404]
ative andsulphateadduct [405]
[394]
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5.2.3.1. Activity of phenolic compounds. Purified phenolic com-
pounds exhibit many activities such as antioxidant [382,404,409],
anti-radical [406,410], UV-protection [382,393,411], metal-
chelation e.g. copper [383] and anti-fouling [381,412].

Activity of Phenolic compounds e.g phlorotannins varies
according to concentration and molecular-size profile [413]. For
example, eckols exhibit anti-viral (anti-HIV) [414] and anti-allergic
[415] activities. They have anti-adipogenic [416] and neuropro-
tective [401] effects and have potential application in the treat-
ment of Alzheimer's disease [417,418] and are inhibitors of mela-
nin formation [419]. Bromophenols are used as “marine” flavor
agents in farmed fish and prawns [390].

Some meroditerpenoids from Sargassum fallax exhibit anti-
tumor activities [396] and elatol, a sesquiterpene found in Laur-
encia obtusa var. dendroidea, is an anti-parasitic agent [420].

Some specific terpenoids of C. serratus, bromophycolides, have
anti-malaria properties due to their macrolide structure [398].
Some of these activities have been patented, for example as anti-
allergic [421], anti-viral [422] and antioxidant [423] agents and
natural UV-screen [424] (‘Helioguards 365’ using MAA from the
red macroalga Porphyra umbilicalis) [425].

5.2.4. Macroalgae as a meal and biofertilizer
In addition to the major products described, macroalgae pro-

vide several other products with significant commercial impact.
For example, three agricultural products such as seaweed meal,
manure and liquid fertilizer, each have annual sales of several
millions of dollars annually (Table 11). Naylor [366] describes
some of these products and their dissemination and use. An
interesting group of high value macroalgal products, is the phy-
cobiliproteins. These protein-containing pigments, which are dis-
tinctive to certain algae, serve as valuable fluorescent tags with
many applications in high technology areas, such as flow cyto-
metry, fluorescence activated cell sorting and histochemistry
[273]. The major product in this area is R-phycoerythrin, which is
currently derived from species of Porphyra, either cultured or
harvested from the wild. The high cost of this process is balanced
by the high value of the product as a biomedical reagent. The raw
material (purified phycobiliprotein) currently sells for approxi-
mately $5000/g [49].
6. Conclusions

The growth in world population has resulted in a surge in
energy demand and therefore, there is a need for secure energy
sources. All the countries are grappling, with the problem of
meeting, the ever increasing demand of transport fuels within the
constraints of international commitments, legal requirements,
environmental concerns and limited resources. Biofuels are an
excellent substitute for conventional diesel fuel, because of being
renewable, nontoxic and biodegradable. Algae are a potential
alternative source for the conventional feedstocks. Current efforts
and business investment are driving attention and marketing
efforts on the promises of producing algal biodiesel and superior
production systems. Algal biofuel production is potentially sus-
tainable but economic feasibility is the major hindrance for its
commercialization.

Apart from potential feedstock for biofuel production, Algae
plays an important role in environmental pollution control, human
health, animal and aqua nutrition, cosmetic industry, pharma-
ceutical filed and as a source for bioactive compounds, biomedical
components and high value pigments.

Algae farming can be coupled with flue gas CO2 mitigation and
wastewater treatment. It can also be carried out with seawater as
the medium, given that marine algal species are adopted, providing
a feasible alternative for biofuel production to populous and dry
coastal regions.

The key message arising from this study is cost-effective
technologies and the processes to convert biomass into useful
biofuels and bioproducts, with particular focus on algal biorefinery
concepts. This biorefinery approach helps to improve the eco-
nomic viability of the algal biofuels.

The paper has discussed the possible conversion technologies
for biofuel production from both macroalgae and microalgae. The
production technologies for different biofuels including biodiesel,
bio-oil, bio-syngas, bio-hydrogen and methane were discussed
briefly. By using thermochemical processes, bio-oil and gas (syn-
gass and methane) can be produced and by using biochemical
processes, bio-ethanol, diesel and bio hydrogen can be produced.
Therefore, based on current knowledge and technology projec-
tions, third generation biofuels specifically derived from micro-
algae are considered to be a technically viable alternative energy
resource that is devoid of the major drawbacks associated with the
first and second generation biofuels.

The following conclusions can be drawn regarding commercial
value assessment of algae:

i. Algae can be used to enhance the nutritional value of food
(Nori, Wakame, Kombu, Arthrospira, Chlorella, Dunaliella) and
animal feed owing to their chemical composition;

ii. Algae play a crucial role in aquaculture (Isochrysis galbana,
Tetraselmis suecica); and

iii. Algae can be incorporated into cosmetics (Pepha-Tight, Pepha-
Ctive).

Algae serve as a source for the production of following
compounds:

i. Bioactive compounds such as Alginates Carrageenans, Agars,
Agarose, Fatty acids, carotenoids (β-carotene and Astaxanthin ),
sterols and several antioxidants;

ii. Biofertilizer (Maerl);
iii. Fluorescent pigments (phycobili proteins);
iv. Algal recombinant proteins;
v. Algal Drugs (anticancer, antimicrobial, anti-HIV, antiviral); and
vi. Stable-isotope (13C-palmitic acid and 13C-labeled linoleic).

Evidence in this review suggests that, the concurrent produc-
tion of valuable co-products that have wide applications in med-
icine, food and cosmetic industries with biofuel production, has
significant potential.

Overall, Combining algal farming, novel bioproducts synthesis
and the production of biofuels using biorefinery strategy is
expected to significantly enhance the overall cost-effectiveness of
the biofuels using algae technology. As a result, utilization of algae
for biofuel production, provides dual benefits, it serves as a bio-
mass for the production of biofuels and also save our environment
from detrimental effects.
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