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A B S T R A C T   

Harmful macroalgal blooms (HMBs) have been increasing along China’s coasts, causing significant social impacts 
and economic losses. Besides extensive eutrophication sustaining coastal seaweed tides, the stimuli and dynamics 
of macroalgal blooms in China are quite complex and require comprehensive studies. This review summarizes the 
distinct genesis, development and drifting patterns of three HMBs that have persistently occurred in China’s 
coastal waters during recent years: transregional green tides of drifting Ulva prolifera in the Yellow Sea (YS), local 
green tides of multiple suspended seaweeds in the Bohai Sea and large-scale golden tides of pelagic Sargassum 
horneri in the YS and East China Sea. While specific containment measures have been developed and imple-
mented to effectively suppress large-scale green tides in the YS, the origin and blooming mechanism of golden 
tides remain unclear due to lack of field research. With the broad occurrence of HMBs and their increased 
accumulation on beaches and coastal waters, it is necessary to investigate the blooming mechanism and 
ecological impacts of these HMBs, especially with the growing stresses of climate change and anthropogenic 
disturbances.   

1. Introduction 

With the increasing occurrence and intensive environmental im-
pacts, macroalgal blooms are now of growing concern worldwide 
(Valiela et al., 1997; Ye et al., 2011; Smetacek and Zingone, 2013). The 
cosmopolitan seaweeds, Ulva (including the former Enteromorpha, 
Hayden et al., 2003) and Sargassum, are responsible for most macroalgal 
blooms (Teichberg et al., 2010; Ye et al., 2011; Smetacek and Zingone, 
2013). These two genera originally colonized intertidal to sublittoral 
waters as primary producers, and blooms of free-floating biomass of 
these two taxa have recently enlarged their distribution and intensified 
their impacts on coastal biochemical cycling and marine benthic 
ecosystems. 

The green tides caused by Ulva spp. started in Europe in the 1900s, 
and were widespread in temperate and tropical coastal waters along 
North America, Asia and other continental coasts in the 1970s–2000s 

(Fletcher, 1996; Valiela et al., 1997; Charlier et al., 2008; Teichberg 
et al., 2010; Ye et al., 2011). Sargassum blooms, so-called golden-brown 
tides, are most prominent in the regions of the Sargasso Sea, Gulf of 
México and Caribbean Sea (Laffoley et al., 2011; Smetacek and Zingone, 
2013). Sargassum rafts have been floating for decades, and some species 
(notably Sargassum natans and S. fluitans) are believed to be holopelagic, 
that is, permanently drifting in the water (Parr, 1939; Amaral-Zettler 
et al., 2017). Recently, unusual expansions of Sargassum rafts have been 
reported along the west coasts of the northern and tropical Atlantic and 
even farther to the coasts of western Africa and northern Brazil in the 
southern Atlantic (Gower and King, 2011; Gower et al., 2013; Smetacek 
and Zingone, 2013; Sissini et al., 2017; Wang and Hu, 2017; Johns et al., 
2020). Above all, Ulva spp. are prone to bloom in the photic zone of 
eutrophic coasts and estuaries (Charlier et al., 2008; Teichberg et al., 
2010), while pelagic Sargassum spp. are widespread in oceanic waters 
(Lapointe, 1995; Teichberg et al., 2010; Ye et al., 2011; Smetacek and 
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Zingone, 2013). Nevertheless, the concurrence of both seaweeds has 
recently been observed in the Yellow Sea (YS) of China (Xiao et al., 
2020a, b). In addition to the link between coastal eutrophication and 
seaweed tides of Ulva and Sargassum (Valiela et al., 1997; Teichberg 
et al., 2010), the blooming dynamics varied significantly among the 
diverse causative species and in different regions (Ye et al., 2011; 
Smetacek and Zingone, 2013). If no containment measures are imple-
mented, macroalgal blooms can be persistent and even last for decades 
on some occasions (Bonsdorff et al., 1997). Although the ecological 
impacts of floating seaweeds in open water are still unclear (Laffoley 
et al., 2011), the massive accumulation of seaweed biomass in coastal 
waters can cause a series of deleterious impacts on local ecosystems, 
including hindrance of perennial seagrass, alteration of benthic fauna, 
disturbance of nutrient biogeochemical cycling and hypoxia resulting 
from the degradation of blooming algae (Valiela et al., 1997). 

In 2008, an astonishing green tide unprecedentedly inundated the 
coasts of Qingdao, the venue for the sailing events of the Beijing 
Olympics (Hu and He, 2008; Liang et al., 2008; Liu et al., 2009). Remote 
sensing revealed that tremendous floating green seaweed biomass 
covered the coasts and offshore of Shandong and Jiangsu provinces in 
the southern YS (Hu, 2009). The large-scale Yellow Sea green tide 
(YSGT) has recurred every spring to summer thereafter and resulted in 
significant economic losses. In terms of the distribution, coverage and 
production of massive floating mass, YSGT has been recognized as the 
world’s largest green tide (Liu et al., 2009, 2010, 2013). During recent 
field surveys on the YSGT, pelagic brown seaweeds, comprised exclu-
sively of a single species Sargassum horneri, have been increasingly 
observed in the YS. The widespread drifting S. horneri has even intruded 
into the southwestern YS in spring, co-occurring with the annual green 
tide and forming unusual bimacroalgal blooms in recent years (Kong 
et al., 2018; Liu et al., 2018b; Xiao et al., 2020b). Another local green 
tide has persisted in the coastal water off Qinhuangdao in the Bohai Sea 
since 2015 (Song et al., 2019a, b). Additionally, more local green tides 
have been reported in Yantai and Haiyang in Shandong Province, Xia-
men in Fujian, Shantou and Zhanjiang in Guangdong, Haikou in Hainan 
and Beihai in Guangxi (Fig. 1, Fletcher, 1996; Ma et al., 2010; Cao et al., 
2016), indicating that harmful macroalgal blooms (HMBs) are not a 

regional issue but a serious ecological nuisance that is pervasive 
throughout the coastal waters of China. 

The dynamics of these three types of macroalgal blooms vary 
significantly, and the underlying mechanisms of the different blooms are 
not fully understood. The current knowledge on blooming mechanism 
indicated different research stages of these three blooms, which influ-
enced development of their containment measures. For the large-scale 
green tides that have occurred periodically in the YS, the primary 
source of the floating Ulva biomass was confirmed to be closely related 
to marine aquaculture in the southwestern YS (Liu et al., 2010, 2013; 
Zhou et al., 2015). The development process, environmental drivers and 
intrinsic physiological characteristics contributing to the massive 
expansion of green tides were further elucidated through numerous 
long-term field observations, in situ and laboratory experiments and 
numerical modeling (Bao et al., 2015b; Wang et al., 2015; Liu et al., 
2020a). Based on these studies, a series of countermeasures were 
recently executed in the source region, resulting in an overt reduction in 
the overall size of green tides in the YS. Additionally, general advice on 
the mitigation of local green tides in the Bohai Sea was proposed based 
on current research. While for the large-scale golden tides, the genesis, 
development and environmental factors leading to the massive prolif-
eration of pelagic S. horneri remain unclear due to lack of sufficient field 
research. Hence, further comprehensive study is needed before specific 
prevention and control strategies can be proposed for the golden tides. 

In this review, the current knowledge on the genesis and develop-
ment process of the three representative macroalgal blooms and prac-
tical countermeasures to mitigate large-scale green tides are reviewed to 
provide an improved understanding of the biological characteristics and 
ecological impacts of macroalgal blooms and to highlight important 
directions for future research to decipher their bloom mechanisms. 

2. Green tides in the Yellow Sea 

2.1. Genesis of the green tides in the Yellow Sea 

The green tide in the YS was first detected in 2007 when floating 
mats of green algae appeared along the coasts of northern Jiangsu and 
Haizhou Bay (34◦N–35.5◦N), with a maximum coverage of 100 km2 

(Keesing et al., 2011; Guo et al., 2016; Qi et al., 2016). It did not arouse 
much attention until 2008, when a larger green tide threatened the 
Olympic sailing regatta in Qingdao. Thereafter, the large-scale green 
tides recurred annually, with a maximum daily distribution of 58,000 
km2 and coverage of 2100 km2 (Fig. 2, MNR, 2020; Liu et al., 2009, 
2013, 2016; Keesing et al., 2011; Ye et al., 2011; Huang et al., 2014; Liu 
et al., 2015). Remote sensing traced the floating biomass back to the 

Fig. 1. Macroalgal blooms along the coasts of China. A: Locations of macroalgal 
blooms. Red dots and fonts indicate the locations of local green tides. The green 
dots, fonts and rectangle indicate the location of the transregional green tide in 
the Yellow Sea (YSGT). The brown font represents the schematic location of the 
golden tide which can affect the entire southern Yellow Sea, East China Sea and 
reach the northern Taiwan Strait occasionally. Abbreviations QHD, Qin-
huangdao; BH, Beihai; QD, Qingdao; YSGT, transregional Yellow Sea green tide; 
SBS, Subei Shoal; GT, golden tide. B-E: Field photos of local green tide in QHD 
(July 2018), YSGT (June 2012), GT (June 2017) and local green tide in the 
mangrove wetland of BH (December 2015). 

Fig. 2. Interannual variations in the maximum daily distribution and coverage 
of the YSGTs (MNR, 2020). Markers (*) indicate that early containment prac-
tices were conducted along the coast of Jiangsu Province (see text). 
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coastal water of the southwestern YS, close to the Subei Shoal (Hu, 2009; 
Liu et al., 2009; Hu et al., 2010; Ciappa et al., 2010; Keesing et al., 2011; 
Garcia et al., 2013; Bao et al., 2015b; Zhang et al., 2017). Later field 
observations pointed out that the macroalgal waste disposed from 
Pyropia (formerly known as Porphyra, Sutherland et al., 2011) aqua-
culture rafts in the Subei Shoal were the primary source of the initial 
floating biomass (Liu et al., 2013, 2016; Zhang et al., 2014; Wang et al., 
2015; Zhou et al., 2015). Subsequently, intensive field research was 
conducted in the Subei Shoal and revealed the complicated genesis of 
the large-scale green tides in the YS, which were directly stimulated by 
extensive marine aquaculture and assisted by the favorable local 
hydrochemical and geophysical environment. 

The Subei Shoal is a large intertidal muddy flat with an area of 
approximately 18,000 km2, covering the northern Yangtze River Estuary 
(32◦N) to the Sheyang River (34◦N) and extending from the eastern 
coastline of Jiangsu Province to 90 km offshore (Wang et al., 2011). 
With its unique hydrogeochemical characteristics, Subei Shoal has been 
the largest nursery ground for Pyropia aquaculture since the 1970s (Cao, 
2006). Typically, Pyropia aquaculture starts in fall (September – 
October) when rafts with Pyropia seeded nets are set up in the field. After 
approximately half-year culture until the following spring (April – May), 
the nursery nets are collected back for the Pyropia crops, while the 
remaining facilities (bamboos and connecting ropes) are cleaned in situ 
and recycled for the next fall (Fig. 3). A series of studies suggested that 
vast Ulva micropropagules, including the blooming species U. prolifera, 
existed in the water and sediment of the Subei Shoal (Fang et al., 2012; 
Liu et al., 2018a; Miao et al., 2020a, b). The raft structures (bamboos, 
ropes and nets) provided the best fouling substrata for the micro-
propagules (Geng et al., 2015). The species composition of the macro-
algal community on the rafts succeeded with the fluctuating 
temperatures from fall to winter and the next spring (Fan et al., 2015; 
Keesing et al., 2016). In particular, U. prolifera grew rapidly when the 
temperature increased to above 15 ◦C and accounted for 40% of the total 
epiphytic macroalgal biomass during the Pyropia harvest season (April 
to May, Li et al., 2015b; Fan et al., 2015; Song et al., 2015). During the 
cleaning process after the harvest of Pyropia crop, the epiphytic green 
macroalgae were inadvertently disposed on the muddy flats (Fig. 3) and 
eventually drifted into the coastal waters, becoming the primary source 
of the floating green tides. It was estimated that over 250 km2 of Pyropia 
rafts produced approximately 16,000 tonnes of macroalgae waste, 
among which 40% were U. prolifera (Wang et al., 2015). With its strong 
buoyancy and growth rate (Fu et al., 2019; Hao et al., 2020), U. prolifera 
dominated the floating patches rapidly and proliferated into large-scale 
floating mats within a month. 

Additional efforts were made to test hypotheses on the other sources 
of floating Ulva macroalgae, including direct germination from envi-
ronmental micropropagules and discharge from coastal aquaculture 
ponds (Pang et al., 2010; Liu et al., 2012). Although green macroalgal 

micropropagules could be detected in the entire southern YS even in 
winter without green tides (Zhang et al., 2010, 2011; Liu et al., 2012, 
2018a), field surveys did not detect swarms of germlings, the interme-
diate stage linking the environmental micropropagules with the abun-
dant floating biomass (Wang et al., 2015). In addition, various 
laboratory studies indicated that these environmental micropropagules 
need to attach to certain substrata to grow into thalli (Liu et al., 2012, 
2018a; Zhang et al., 2013a). Meanwhile, no Ulva algae discharge was 
found in the coastal aquaculture ponds of shrimps or crabs before or 
during the blooming period (Wang et al., 2018). Further genetic 
screening on the attached populations of U. prolifera throughout the 
coastal waters of China confirmed the existence of the ‘floating’ ecotype 
only in the Subei Shoal, which was the strain responsible for the 
large-scale green tide in the YS (Zhao et al., 2015). This strain has not 
been identified in other surveyed regions (Zhang et al., 2018), and no 
other source has been observed or confirmed. 

2.2. Drifting and expansion 

In addition to the impacts of Pyropia aquaculture, the unique 
topography of the Subei Shoal played an important role in transporting 
the initial floating biomass. Both field observations and drifting simu-
lations found that the initial floating biomass accumulated along deep 
grooves and formed long, narrow floating slicks. The unusual micro-
circulation induced by the topography of the shoal coupled with the 
seasonal monsoon assisted the formation and transport of algal slicks 
(Xia, 2009; Bao et al., 2015a, b). The source biomass derived from the 
northern and eastern raft regions contributed significantly to the for-
mation of green tides in open waters (Bao et al., 2015b; Huang et al., 
2014; Zhang et al., 2017; Xiao et al., unpubl.). Due to the increasing 
demand for Pyropia from Japan in 2005 (Cao, 2006), the culture rafts 
almost doubled in 2007 along the Jiangsu coast, especially in the 
northern and offshore regions of the Subei Shoal (Fig. 4). Computational 
simulation and drifter experiments also indicated that the Ulva biomass 
derived from the northern and eastern offshore regions of the shoal can 
readily drift out of the shoal with the assistance of strong tidal forces and 
northward winds (Bao et al., 2015b; Zhang et al., 2017; Xiao et al., 
unpubl.). 

Unlike the green tides in other coastal regions around the world, the 
floating macroalgal biomass of the YSGT was not restricted to the 
original source area (Subei Shoal) but expanded extensively into 
offshore and open waters, which was resulted not only from favorable 
environmental conditions but also from the inherent physiological 
advantage of floating U. prolifera. Multiple field drifter experiments 
coupled with the numerical modeling corroborated that the seasonal 
monsoon and its associated surface currents in spring and summer drove 
the northward drifting of the floating macroalgal mats, and likely 
determined the geographic range that the YSGT was distributed and the 
amount of biomass washed ashore (Liu and Hu, 2009; Qiao et al., 2009; 
Ciappa et al., 2010; Qi et al., 2016). The nutrients in the western YS were 
sufficient to sustain the rapid growth of floating U. prolifera (Li et al., 
2015a; Shi et al., 2015; Wang et al., 2019; Zhang et al., 2020), and the 
availability of various types of nitrogen (dissolved inorganic nitrogen, 
DIN vs. dissolved organic nitrogen, DON) favored the amplification and 
persistence of floating biomass at different blooming stages in different 
regions (Li et al., 2016, 2019; Zhang et al., 2020). The massive loads of 
wastewater, manure, fertilizer and atmospheric deposition provided the 
most nutrients consumed by the large-scale green tides in the YS 
(Valiela et al., 2018). In addition, high nutrient uptaking and assimila-
tion capability and the C4 photosynthetic pathway also enhanced 
photosynthesis and rapid biomass accumulation of floating U. prolifera 
exposed to fluctuating irradiance intensity and CO2 availability when 
drifting in open water (Luo et al., 2012; Xu et al., 2012; Zhang et al., 
2013b; Valiela et al., 2018; Wang et al., 2019; Liu et al., 2020a). 
Furthermore, Wang et al. (2020a) hypothesized that the sporangium and 
in situ germination of floating U. prolifera thalli and grazing of 

Fig. 3. Raft distribution based on high-resolution satellite images showing the 
raft removal process during February–June 2018 (A) and field pictures of 
fouling green macroalgae on the rafts (B–D) and the raft cleaning process (E–G, 
Wang et al., 2015). 
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herbivorous zooplankton assisted the rapid proliferation and massive 
expansion of drifting mats, which needs further field investigation. 
Facilitated by all these bio-, geochemical factors, a few thousand tonnes 
of initial floating biomass were amplified into millions of tonnes of 
macroalgal mass in approximately one to two months. Such massive 
macroalgal mass widespreading over the entire western YS is hard to be 
controlled or cleaned by the traditional countermeasures (see below). 

2.3. Prevention and control practices 

To provide a suitable environment for the sailing events of the 29th 
Olympic Game in 2008, more than 16,000 people, 1600 fishing boats 
and 1000 trucks were emergently organized and implemented in 
response to the sudden outbreak of large-scale green tides in the near-
shore water of Qingdao, and approximately 1 million tonnes of fresh 
Ulva algal mass was manually removed from the beaches and coastal 
waters (Ye et al., 2011). This primitive method with such dramatic in-
puts was apparently infeasible as a long-term response to the green tides. 
Subsequently, a series of emergent tactics were developed to prevent the 
Ulva algal mass from piling up on the recreational beaches and to protect 
the shoreline and coastal facilities. Countermeasures, such as blocking 
drifting mats with arresting nets and collecting algal masses through 
automatic processing line have been widely adopted by multiple coastal 
cities of Shandong Province and have partially mitigated the adverse 
impacts of green tides on marine aquaculture and environment. How-
ever, these measures can only protect the limited areas along the 
coastline and are quite costly and infeasible for open waters. For 

example, a total of 80 km arresting nets were implemented along the 
coasts of Shandong (55 km in Qingdao, Fig. 5, 10 km in Yantai, 5 km in 
Weihai, 10 km in Rizhao) in 2019. Approximately 12,000 fishery boats 
were deployed, and over 1.8 million tonnes of algae mass were collected. 
This cleaning battle directly cost over 70 million RMB (Wang et al., 
2020c). Another concern related to these obligatory cleaning tactics is 
the potential land pollution resulting from disposal or burial of the 
massive algal mass collected in such a short period (~ 2 months). It took 
years for the landfill of Ulva waste to recover from the toxic hydrogen 
sulfide (H2S) and heavy metal pollution carried from the sea. The spe-
cific equipment and technology were developed to stabilize and utilize 
the algal mass. For example, a private company (Qingdao Seawin 
Biotech Group Co., Ltd) equipped with pressing machines and a fertilizer 
line, was able to consume 10,000 tonnes of fresh U. prolifera per day. The 
bioproducts (e.g., fertilizers, cosmetics and food additives) transformed 
from harvested seaweeds could partially counteract the significant 
economic losses (Cai et al., 2016; Zhang et al., 2019c), while their 
economic value is greatly impaired by the high cost of collecting and 
transporting the very large biomass from the sea. 

Since the source region of the Yellow Sea green tides (YSGTs) has 
been confirmed by various studies (Zhou et al., 2015; Wang et al., 2015; 
Liu et al., 2016; Zhang et al., 2017), containment strategies in the source 
region are believed to be more efficient and cost-effective due to the 
relatively limited geographic range and lower amount of initial algal 
mass (Wang et al., 2020c). The source-controlling measures focused on 
the three key stages involved in the early development process of the 
YSGTs, the Ulva algae attached to the rafts, the disposed algal mass and 

Fig. 4. The increase of Pyropia aquaculture rafts in the Subei Shoal. A-B: Comparison of the raft distributions in 2004 (A) and 2007 (B) based on remote sensing, 
showing a clear increase of rafts in the northern and offshore regions (arrows). C: The increasing trend of culture area along the Jiangsu coast (black symbols and 
dashed line, BFMARA, 2019) and in the Subei Shoal (red symbols and solid line, Xing et al., 2019) during the last two decades. 

Fig. 5. Schematic of the arresting nets (red lines) deployed along the coastline of Shinan and Laoshan districts of Qingdao to block floating Ulva biomass (A), field 
pictures of the arresting nets (B) and ship-based removal of floating Ulva biomass (C). 
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the initial floating mass in the Subei Shoal (Wang et al., 2020c). Tactics 
developed to avoid the attachment of Ulva spores and reduce the 
epiphytic green algal mass on the rafts included replacing the traditional 
bamboos and ropes with new antifouling materials for rafts, freezing 
pretreatment, using modified clays to deposit and reduce micro-
propagules from water and spraying acid to eliminate the green algae on 
the rafts (Geng et al., 2015; Li et al., 2017; Liu et al., 2020b). From 
November 2019 to May 2020, a large-scale field trial was conducted to 
reduce the epiphytic green macroalgae in the entire Pyropia raft region 
in the Subei Shoal. The initial measure was to eliminate the attached 
algae using sodium hypochlorite (NaOCl) detergent. Approximately 
1500 tonnes of solution (2%) was sprayed on the rafts in November 
2019, and additional 400 tonnes were applied from March to April 2020. 
Over 2000 tonnes of attached algae were estimated to be eliminated 
through this measure; however, the potential adverse impacts of this 
chemical on the Pyropia crops and the benthic organisms, as well as the 
rapid recruitment of attached green algae with increasing temperature, 
suspended the further implementation of this measure. Then, two more 
approaches (early-raft-removal and rope embedding) were proposed to 
reduce the potential amount of algal mass disposed on the muddy flat. 
To avoid rapid proliferation of epiphytic green algae in May, especially 
the bloom-forming U. prolifera (Fan et al., 2015), local fishermen were 
required to remove all the rafts from the shoal (without any cleaning 
effort) before early May, which was about one month earlier than the 
regular operation. Then the connecting ropes of Pyropia rafts were 
settled on the flat and embedded into mud with the assistance of strong 
tidal forces. The epiphytic green algae on the ropes were allowed to 
decay naturally before being released into the water column (Wang 
et al., 2020c). Although the rope-embedding approach was not widely 
implemented in 2020, it is easy to carry out in the future and could be an 
effective supplement for the measure of early-raft-removal. With all the 
practical approaches, the size of the green tide in 2020 was the smallest 

within the last five years (Fig. 2). The maximum coverage of the green 
tide in 2020 (192 km2) was comparable to that of 2018 (193 km2, 
Fig. 2), when a previous large-scale field trial of controlling initial 
floating macroalgae was conducted (described below). 

Based on the transport pattern of floating algal slicks, an efficient 
algae-removal strategy was proposed to reduce the initial free-floating 
algal mass from the Subei Shoal (the third key stage, Wang et al., 
2020c; Xiao et al., unpubl.). This strategy was implemented in 2018 to 
secure marine environmental safety during the Shanghai Cooperation 
Organization (SCO) Summit in Qingdao. Approximately 3000 tonnes of 
the initial floating algal mass were removed from the Subei Shoal and 
the adjacent coastal water (Jiangsu Fishery Bureau, personal commu-
nication). Contemporaneous field observations indicated that the green 
macroalgae attached on the rafts and initial floating biomass were much 
higher in 2018 than that in previous years (Xiao et al., 2020a), while the 
scale of the green tide (193 km2 maximum coverage) was the lowest 
since 2013 (Fig. 2). These field trials corroborated the origin and source 
of the large-scale green tides in the YS and validated the feasibility and 
efficiency of these source control strategies on abating the overall scale 
of the YSGT and mitigating its significant ecological and social impacts. 

3. The green tide in the Bohai Sea 

In 2015, another local green tide occurred in the coastal water of 
Qinhuangdao of the western Bohai Sea (Fig. 1), and it has recurred every 
April to September since then. During the blooms, vast macroalgae 
accumulated primarily on the Jinmenghaiwan bathing beach at the es-
tuary of the Tang River (39◦54′19.36′′N, 119◦33′54.90′′E), spread 
rapidly throughout the three adjacent beaches, Jinwu, Qianshuiwan and 
Geziwo, and reached Jinshanzui (39◦49′54.69′′N, 119◦31′30.50′′E, 
approximately 12 km south of the initial location, Fig. 6). The bloom was 
restricted to the photic zone of the shallow intertidal and subtidal 

Fig. 6. Local green tides in the Bohai Sea. A: Map of the coastline of Qinhuangdao (see Fig. 1 for the location of QHD). JMW, Jinmengwan bathing beach; JW, Jinwu 
bathing beach; QSW, Qianshuiwan bathing beach; GZW, Geziwo bathing beach; JSZ, Jinshanzui marine protected area; TR, Tang River; LAI, Lianhua artificial island; 
HAI, Hailuo artificial island. B: Variations in biomass and species composition during the three phases of the green tide. C, D and E: Attached Bryopsis plumose, 
Gracilaria lemaneiformis and Ulva prolifera from the seaweed bed, respectively. F: Field picture of a green tide on Jinmengwan beach. Scale bars in C–E are 5 cm. 
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inshore water (approximately 0–10 m from the shoreline and 0–2 m 
depth, Song et al., 2019a, b) The blooming macroalgae, comprising 
Multiple species (see below), were suspended throughout the water 
column, which was distinct from the YSGTs. Although the size of the 
green tide in the Bohai Sea (approximately 0.12 km2) was 3–4 orders of 
magnitude lower than that of YSGTs (100–2100 km2 in coverage), it also 
caused significant economic losses and social impacts to multiple 
important tourist attractions and a national marine protecting area. 

Field research on bloom dynamics confirmed the independence of 
this local green tide to the YSGTs. The blooming macroalgae comprised 
M. species and showed evident species succession during the bloom. 
Approximately 8 species (7 families in 3 phyla) were identified, 
including Ulva prolifera, U. pertusa, Bryopsis plumose, Gracilaria lema-
neiformis and Codium fragile (Song et al., 2019b). Field surveys revealed 
that the entire blooming process could be divided into 3 phases based on 
the dominant species: I, low biomass was dominated by U. pertusa from 
late April to mid-May; II, the growing biomass was dominated by the red 
algae B. plumosa during mid- May to mid-June; III, U. prolifera prolif-
erated rapidly and became dominant since mid-June, and the biomass of 
U. prolifera along with the other two common species B. plumose and 
G. lemaneiformis remained high until late September (Fig. 6). 

The two major blooming species, B. plumosa and U. prolifera, were 
identified only in the natural seaweed bed located in the inshore water 
of Jinmengwan, and the species succession of the macroalgal commu-
nity on the seaweed bed was highly consistent with that of the sus-
pending macroalgae of the green tides. Interestingly, these blooming 
species preferred different substrata, G. lemaneiformis was mainly 
attached to the dwelling tubes of benthic Polychaeta, while U. prolifera 
and B. plumosa preferred the gravels (Fig. 6). Combined with field ex-
periments, it was concluded that the attached macroalgae on the 
seaweed beds provided the original algal source for the green tides in the 
Bohai Sea (Song et al., 2019a). The blooming U. prolifera in the Bohai 
Sea was genetically distinct from the floating U. prolifera in the YS, 
which further confirmed the independence of these two types of green 
tides (Zhao et al., 2015; Han and Song, unpublished data). Long-term 
monitoring showed that the DIN concentration in the coastal water of 
Qinhuangdao increased from 0.1 mg L − 1 to 0.15 mg L − 1 during 2006 
to 2016, while the DIP decreased from 0.03 to 0.015 mg L − 1 (CNEMC, 
2016), suggesting a general eutrophication with the high N/P ratio at 
this coast. Additional numerical modeling indicated that substantial 
coastal construction (e.g., two artificial islands, HAI and LAI, con-
structed in 2014) altered the hydrodynamics of the coastal water, which 
reduced the water exchange and hampered the nutrient dispersal, and 
hence assisted the blooming of the benthic macroalgae (Song et al., 
2019a). Countermeasures, such as decreasing the nutrient input and 
increasing the water flush in the sensitive sea area, were proposed to 
prevent the formation of this local green tide. 

4. Golden tides in the Yellow and East China seas 

The golden tide caused by Sargassum horneri in the East China Sea 
(ECS) has been noted and reported since the 2000s. Abundant Sargassum 
seaweeds were originally detected drifting in the eastern ECS since the 
early 2000s (Komatsu et al., 2007, 2008, 2014a; Filippi et al., 2010), 
while only sporadic pelagic S. horneri was observed in the YS with no 
significant ecological and economic impacts to the coastal areas (Xiao 
et al., 2020a). From the winter of 2016 to spring 2017, an unprece-
dented golden tide inundated the southwestern YS and seriously 
impaired the marine aquaculture in the Subei Shoal. The dense and 
heavy drifting algal mats destroyed 20%–70% of Pyropia aquaculture 
rafts and caused significant economic losses (Xing et al., 2017; Liu et al., 
2018b). Decadal field observations indicated that the inundation events 
in this shallow coastal water were recorded as early as 2013 and have 
recurred every spring since 2017 (Xiao et al., 2020a). The drifting 
Sargassum was often tangled with the Ulva algal mass and formed un-
usual bi-macroalgal blooms in the shoal and adjacent coastal water 

(Xiao et al., 2020a, b). By satellite remote sensing, Hu et al. (2010) re-
ported the first detection of an annual macroalgal bloom in the western 
ECS since 2000, which was originally misidentified as a green tide, but 
proved to be a golden tide in the following research (Qi et al., 2017). 
Satellite remote sensing revealed a much larger geographic distribution 
of the floating Sargassum, from the northern Taiwan Strait to the entire 
southern YS, from the western coastline to the eastern boundary of the 
continental shelf of the ECS (Hu et al., 2010; Komatsu et al., 2014a; Qi 
et al., 2017). The scale of golden tides, in terms of distribution, coverage 
and total biomass, has increased significantly in recent years (Qi et al., 
2017). In both 2017 and 2020, for example, a substantial amount of 
drifting S. horneri was observed during multiple shipboard surveys from 
April to June in the western YS (Xiao et al., 2020a, b; Yuan et al., 
unpubl.). Subsequent remote sensing analyses found that pelagic 
Sargassum was widespread in the entire southern YS and open waters of 
the ECS and the geographic distribution of golden tides was even 
broader than the contemporary green tides (Fig. 7). The golden tide of 
S. horneri has become the second transregional macroalgal bloom along 
the coasts of China after the YSGTs and poses serious threats to the 
coastal ecosystems and economy (Liu et al., 2018b; Byeon et al., 2019; 
Choi et al., 2020). 

Remote sensing analyses and computational modeling revealed 
variable drifting pathways of the floating S. horneri in the YS and ECS. 
Field investigations and computational simulations suggested that the 
drifting S. horneri was likely originated from the western coasts of the 
ECS (the coasts of Zhejiang Province) and was transported by water 
currents to the convergence zone of the continental shelf and the Kur-
oshio Front (Komatsu et al., 2007, 2014a, b; Filippi et al., 2010). 
Furthermore, unusual expansion of drifting Sargassum was occasionally 
observed in certain years, which could be ascribed to meteorological 
anomalies, global warming or unusual water currents (Filippi et al., 
2010; Komatsu et al., 2014b). Qi et al. (2017) re-examined the drifting 
pathways and interannual variation of golden tides in the ECS and found 
that pelagic Sargassum was widespread from the western coastline to the 
eastern continental shelf of the ECS. The distribution and coverage areas 
of floating Sargassum have increased since 2012 and even exceeded the 
sizes of most Ulva green tides in 2017, with an overall coverage of 160, 
000 km2. Similar to previous studies, particle tracking simulations 
indicated floating Sargassum was originated from the Zhejiang coast in 
early spring and then transported to the eastern offshore of the ECS and 
farther north into the southern YS through the Kuroshio Current and 
Taiwan Warm Current (Qi et al., 2017). Later, Xing et al. (2017) re-
ported another drifting path of floating Sargassum in the western YS, in 
which the floating Sargassum was initiated from the eastern tip of the 
Shandong Peninsula in fall 2016, drifted southward along coasts and 

Fig. 7. Distributions of green and golden tides on June 22nd and April 24th, 
2020, respectively, based on satellite remote sensing (Yuan et al., unpub-
lished data). 
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accumulated in the shallow water off the Subei Shoal in winter 2016. 
Although the size of the winter bloom (~ 8.8 km2 in coverage) was much 
smaller than that in the ECS, this southward progression in winter was 
consistently detected in the following years (Yuan et al., unpubl.). 
Compared to the consistent point source and drifting pathway of the 
green tides in the YS, the variable drifting pattern of the golden tides in 
the YS and ECS in different seasons suggested possibly multiple sources 
of the floating Sargassum, which remains to be clarified. 

The current hypotheses on the source and origin of the golden tides 
were mainly derived from satellite remote sensing analyses and nu-
merical modeling, while little field work has been done to confirm their 
potential link to any benthic population of S. horneri. Indeed, some 
discrete benthic populations have been identified along the coasts of 
Liaoning, Shandong and Zhejiang provinces (Tseng and Chang, 1959; 
Tseng, 1984; Sun et al., 2008, 2009; Hu et al., 2011; Bi et al., 2016; 
Huang et al., 2018; Lv et al., 2018; Ding et al., 2019), but little is known 
about their abundance, population sizes, seasonality and life cycle. It 
was speculated that anthropogenic disposal or natural break-off of 
S. horneri from mussel aquaculture rafts in northern coastal waters of 
Zhejiang Province contributed to the large-scale golden tide in offshore 
water of the ECS (Ding et al., 2019; Zhang et al., 2019b; Zhuang et al., 
2021). Other research (Huang et al., 2018) indicated that the winter 
bloom at the end of 2016 was originated from the Bohai Strait and the 
adjacent coastal water. Phylogenetic analyses revealed a high genetic 
homogeneity of the drifting S. horneri in both the YS and ECS (Hu et al., 
2011; Liu et al., 2018b; Lv et al., 2018). Sensible molecular markers (e. 
g., microsatellites, novel mtDNA noncoding regions) have been recently 
developed to discriminate a few haplotypes within S. horneri (Su et al., 
2017; Liu et al., 2018b; Byeon et al., 2019; Zhuang et al., 2021), while 
the genetic affinity of pelagic S. horneri with any benthic population has 
yet to be determined. In addition, it is far from being understood that 
how much benthic populations may contribute to the different seasonal 
golden tides, as well as what caused the wide geographic distribution 
and significant biomass accumulations in some regions. These questions 
are even more complex since current knowledge on the physiology and 
reproduction of floating S. horneri is also very limited. To date, mature 
receptacles, young seedlings, new branchlets growing from the recep-
tacle and holdfasts have been observed on floating S. horneri seaweeds 
during blooms (Komatsu et al., 2008; Liu et al., 2018b; Xiao et al., 
2020b), but it is still unclear whether S. horneri could complete its life 
cycle and remain holopelagic, like the floating S. fluitans and S. natans in 
the Sargasso Sea (Laffoley et al., 2011). 

5. Impacts of large-scale macroalgal blooms 

Previous studies on the local green tides around the world indicated 
that increasing nitrogen loading to shallow estuaries favored blooming 
of ephemeral macroalgae, which, in turn, altered the biogeochemical 
cycles of nutrients and prompted significant changes in the benthic 
fauna and primary producers (mainly replacing the seagrass beds with 
seaweed mats, Valiela et al., 1997). The ecological consequences of 
large-scale macroalgal blooms, such as the YSGTs and golden tides in the 
YS and ECS, were likely more complicated, from the profound changes 
in geochemical cycling to instant fluctuations in planktonic and benthic 
organisms. At the same time, the influences could vary significantly 
among the distinct ecosystems and at different stages of the green tides. 
At the early stage of the green tides, floating U. prolifera actively 
assimilated inorganic carbon to support its rapid growth, resulting in an 
increase in pH and dissolved oxygen (DO) in the water column, which 
was commonly observed in the Subei Shoal and the coast of southern 
Jiangsu Province during April to May (Zhang et al., 2019c; Miao et al., 
2020b). However, the massive U. prolifera algal mass was piled up and 
washed ashore along the coast at the descending stage of the green tides. 
Algal decomposition released loads of C, N and P and consumed a mass 
of oxygen from the water, resulting in deleterious water quality, low DO 
and even hypoxia (e.g., local waters of Qingdao in July to August, Lin 

et al., 2017; Feng et al., 2020). 
The periodic inundations of macroalgal biomass covered up to 2.6% 

of the sea surface in these marginal seas (Qi et al., 2017; Zhang et al., 
2019a). It could undoubtedly affect every component of coastal eco-
systems in addition to the biogeochemical processes (Norkko et al., 
2000; Wang et al., 2011, 2020b; Zhang et al., 2019c). Although labo-
ratory experiments notified the allelopathic effect of macroalgae on 
various microalgae species (Tang and Gobler, 2011; Gao et al., 2018; 
Cai et al., 2019), microalgal red tides (e.g. Karenia mikimotoi, Hetero-
sigma akashiwo and Noctiluca scintillans) were observed co-occurring 
with green and golden tides in the Bohai Sea and YS (Kong et al., 
2018). It was also commonly found that abundant herbivorous amphi-
pods (Ampithoe spp.) grazed on the drifting U. prolifera and S. horneri and 
proliferated within these drifting mats (Wang et al., 2020a; Xiao and 
Fan, unpubl.). Furthermore, substantial epiphytic benthic organisms, 
juvenile fishes and fish eggs were detected in the pelagic mats of 
S. horneri in the YS (Xiao and Fan, unpubl.). Nonetheless, there has been 
little systematic research on the trophic responses and nutrient cycling 
of these marine organisms under the long-lasting impacts of these pre-
vailing transregional seaweed tides. 

The Yellow Sea, enclosed by the Chinese mainland, Korean Peninsula 
and Yangtze River Estuary, has undergone significant environmental 
changes in recent decades (Lin et al., 2011; Huang et al., 2012; Li et al., 
2015a; Valiela et al., 2018; Song and Duan, 2019). The increasing rate of 
annual mean sea surface temperature (SST) in the southern YS reached 
0.025 ◦C yr− 1 in winter and 0.009 ◦C yr− 1 in summer, while the SST in 
the northern YS increased by approximately 0.048 ◦C yr− 1 in winter and 
0.004 ◦C yr− 1 in summer (Huang et al., 2012; Song and Duan, 2019). 
Ocean acidification was also enhanced along with increased eutrophi-
cation and temperature in the YS, with pH decreasing by 0.003–0.005 
yr− 1 (Song and Duan, 2019). As a response to environmental changes, 
Pyropia aquaculture has moved northward, expanding from the northern 
offshore region of the Subei Shoal (described in 2.2) to the coast of 
Haizhou Bay (between northern Jiangsu Province and southern Shan-
dong). Pyropia aquaculture has developed rapidly along the coasts of 
Shandong Province since 2017–2018 (Tan et al., 2018). The floating 
ecotype of U. prolfiera (the major genetic strain responsible for the 
YSGTs, Zhao et al., 2015) was recently detected in the benthic Ulva 
populations along the coasts of Qingdao with a relatively low abundance 
of 0.3%, indicating the risk of bioinvasion (Miao et al., 2018; Zhao et al., 
2018). In addition, the nuisance jellyfish blooms in the YS and northern 
ECS impaired the diversity and structure of demersal and pelagic fishes 
in the YS (Dong et al., 2011; Shan et al., 2013), which could also impact 
the abundance and community structure of macroalgae through the 
top-down effect (Lotze et al., 2000; Eriksson et al., 2009). The persistent 
large-scale green tide in the YS, increasing golden tides and frequent 
local tides directly reflected the significant pressure of growing 
anthropogenic disturbances and climate changes, which in turn influ-
enced the progression and blooming patterns of these macroalgal 
blooms (Keesing et al., 2016; Qi et al., 2016; Johns et al., 2020) 

6. Summary and perspective 

This review summarizes the recent research progress on the three 
types of macroalgal blooms along the coasts of northern China, covering 
the distinct genesis, development and drifting processes and impacts of 
these blooms. Similar to the harmful algal blooms caused by di-
noflagellates and diatoms, macroalgal blooms are becoming frequent 
ecological nuisances impairing the coastal ecosystem and local economy 
throughout the coasts of China. Thus, more research is needed to reveal 
the bloom mechanisms and the ensuing environmental consequences in 
coastal ecosystems, especially under the pressures of climate change and 
anthropogenic disturbance. In particular, systemic monitoring tech-
niques and ecological models are needed to depict the interannual 
variations of large-scale macroalgal blooms and propose ecologically 
friendly containment measures. 

J. Xiao et al.                                                                                                                                                                                                                                     



Harmful Algae 107 (2021) 102061

8

Compared to the local green tides, the transregional macroalgal 
blooms (e.g., the green tides in the YS and the golden tides in the YS and 
ECS) pose more challenges to monitoring and management. Satellite 
remote sensing coupled with shipboard field surveys has been widely 
used in long-term monitoring since the first occurrence of large-scale 
green tides in the YS. Other multispatial sensors, such as unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), 
have also facilitated specific regional scale observations (Xu et al., 2018; 
Xing et al., 2019). The recent occurrence of bimacroalgal (U. prolifera 
and S. horneri) blooms in the western YS has caused more difficulties on 
detecting and monitoring both blooms through satellite remote sensing, 
and multidimensional sensors and technologies have become increas-
ingly important. In addition, an ecological model simulating the com-
plete blooming dynamics is necessary for future research on the 
interannual variations in environmental drivers of and efficiency of 
containment measures for large-scale macroalgal blooms. Hu et al. 
(2017) and Xiao et al. (2019) took into account the unevenness of 
drifting macroalgae and estimated the floating biomass of green tides in 
the YS, which partially overcame the shortage of the current 
one-dimensional spatial parameters (e.g. maximum distribution and 
coverage), but still counted on instant daily remote sensing data. The 
ecological model should be able to simulate and assess the cumulative 
floating biomass throughout the bloom and the inundated biomass in a 
specific area or time frame. 

Efficient emergent responses and long-term management are needed 
to counteract the detrimental social and economic impacts of these 
harmful macroalgal blooms. As described above, a series of emergent 
mitigation strategies have been developed and implemented in response 
to massive Ulva algal mass accumulated along the coasts of the south-
western YS. These labor-intensive strategies are very costly and prob-
ably impractical for long-term implementation. In comparison, the early 
containment measures are promising for cutting down the initial 
biomass in the Subei Shoal and hence reducing the total floating biomass 
in the YS (Wang et al., 2020c). More research is still needed to investi-
gate the feasible approach and key technology that can effectively pre-
vent and control green tides at the early stage to secure hygienic Pyropia 
aquaculture and, more importantly, systematic improvements of the 
coastal environment. The benthic and drifting S. horneri are generally 
considered as habitats and refugees for various fishes and other littoral 
animals (Komatsu et al., 2007, 2008). However, recent massive inun-
dation and beaching events have caused significant economic losses and 
detrimental environmental impacts (Xing et al., 2017; Liu et al., 2018b; 
Byeon et al., 2019; Choi et al., 2020). Thus, continued monitoring and 
comprehensive field research are needed to delineate the origin and 
drifting of pelagic S. horneri and to develop proper containment mea-
sures to prevent its transition into undesirable harmful golden tides. 
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