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Abstract

Rates of inorganic nitrogen uptake by three Northeast US and three Asian species of Porphyra were compared
in short-term incubations to evaluate potential for longer term and larger scale examination of bioremediation of
nutrient-loaded effluents from finfish aquaculture facilities. The effects of nitrogen (N) species and concentration,
temperature, acclimation history, and irradiance were investigated. Uptake rates increased ca. nine-fold from 20 to
150 µM N. Nitrate and ammonium uptake occurred at similar rates. Irradiance had a strong effect, with uptake at
40 µmol photons m−2 s−1 only 55% of uptake at 150 µmol photons m−2 s−1. N-replete tissue took up inorganic
nitrogen at rates that averaged only 60% of nutrient-deprived tissue. Although there were species (P. amplissima > (P.
purpurea = P. umbilicalis)) and temperature effects (10 ◦C > 5 ◦C > 15 ◦C), interactions among factors indicated
that individual species be considered separately. Overall, P. amplissima was the best Northeast US candidate. It
took up ammonium at faster rates than other local species at 10 and 15 ◦C, two temperatures that fall within the
expected range of industrial conditions for finfish operations.

Introduction

Marine finfish aquaculture has become a multi-billion
dollar industry (New, 1999) with a diverse group
of fishes, including summer flounder, salmon, and
cod, being successfully cultivated (Stickney & McVey,
2002). However, an emerging problem associated
with aquaculture activities is the introduction of in-
organic nutrients into coastal waters (Chopin et al.,
2001; Naylor et al., 2000; Paez-Osuna et al., 2003).
This occurs because fish do not consume all their

feed, with the remainder degraded by bacteria that
release inorganic nitrogen (N) and other nutrients.
Fish also excrete other nitrogenous wastes. Together,
these processes contribute to an effluent rich in NH4

+.
Many coastal areas already suffer from nutrient-driven
blooms of phytoplankton and weedy macroalgae, cre-
ating aesthetic problems, the development of severe
hypoxia in bottom waters, and the death or depar-
ture of ecologically and economically important biota
(Briand, 1987; Sfriso et al., 1987; Cuomo et al., 1993).
Aquaculture has the potential to exacerbate coastal
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nutrient loading if not properly balanced (McVey et al.,
2002).

A promising approach to reduce the impact of
eutrophic effluent is the development of polycul-
ture systems that integrate the culture of finfish with
macroalgae (e.g. Cohen & Neori, 1991; Chopin et al.,
2001; Schuenhoff et al., 2003; Neori et al., 2004).
Macroalgae can concentrate nutrients by a factor of up
to 105 over seawater levels (Lobban & Harrison, 1997).
Further, macroalgae can respond to increased nutrient
availability by augmenting internal stores. For exam-
ple, Porphyra purpurea tissue from the area of anthro-
pogenic nutrient loading contained 6.3% dry weight
(DW) N while tissues from a pristine site contained
only 4.6% DW at the same time of year (Chopin &
Yarish, 1998, 1999). This natural concentration phe-
nomenon has practical application in an aquaculture
context. The integration of the agarophyte Gracilaria
into salmon aquaculture in Chile reduced the release
of nitrogen (N) and phosphorus (P) by 56 and 94%,
respectively (Kautsky et al., 1996; Troell et al., 1997).

The rhodophyte Porphyra is the most valuable cul-
tured seaweed, with an annual value of over US$ 1.2
billion (FAO, 2002). It is primarily used as the wrap-
ping around sushi rolls (nori) but is also a source of
taurine, proteins, vitamins, trace minerals, and dietary
fiber (Tsujii et al., 1983; Noda, 1993). Porphyra is the
preferred source of the pigment, r-phycoerythrin, uti-
lized as a fluorescent tag in biotechnological applica-
tions (Mumford & Miura, 1988).

The morphology of Porphyra makes it an efficient
agent of bioremediation. The thin blade of the game-
tophyte is composed of 1 or 2 cell layers, with all cells
involved in nutrient absorption. In morphotypes with
a high surface area-to-volume ratio, such as Porphyra,
the coupling between ambient nutrient levels and inter-
nal pools is tight, enabling a rapid response to environ-
mental nutrient availability (Neori et al., 2004). While
this coupling often determines field growth rates, nu-
trient concentrations in fish farm effluent should be
high enough that growth and, hence, rates of nutrient
removal remain optimal (Schuenhoff et al., 2003).

The efficacy with which algae such as Porphyra re-
mediate nutrient-rich effluent depends on the rapid se-
questration of nutrients into algal tissue. The rate of
mass removal of N equals growth rate multiplied by
tissue nutrient concentration. Therefore, evaluation of
the bioremediatory potential requires consideration of
both growth rate and tissue nutrient concentration. In
fact, the genus Porphyra attains some of the highest val-
ues of these parameters of any macroalga. Tissue grown

in batch cultures pulsed with 300 µM N produced tis-
sue containing 5–7% N DW (Carmona, unpublished
data). Porphyra is fast growing, with increases of up
to 15–35% per day, translating into doubling times as
low as 2–5 days (Hafting, 1999; Kraemer et al., unpub-
lished). The high productivity and nutrient accumula-
tion, and market potential make polyculture systems
that include Porphyra valuable for the abatement of
coastal nutrient loading by finfish aquaculture (either
in the sea or on the land), while also providing a po-
tentially valuable product upon harvest (Chung et al.,
2002).

In any evaluation of candidates for fish farm effluent
bioremediation, measurement of N concentration in the
growth medium is relatively easy and rapid (Chopin &
Yarish, 1999; Chopin et al., 1999). The measurement
of growth rate, however, requires significant time and
resources (space, growth media, etc.). Since the genus
Porphyra has a simple sheet-like morphology, limited
storage potential, and exhibits rapid growth, taxa in
this genus must be capable of supporting that growth
with the uptake and assimilation of nutrients. This work
used short-term measurements of N uptake rate as a
rapid bioassay to evaluate the bioremediatory potential
of various species of Porphyra. Results presented here
and work in review elsewhere support the idea that
the rate of N uptake in the short term by Porphyra
can predict maximum growth rates (r = 0.70, p =
0.051, n = 8; results not shown). We have identified a
local candidate now being tested in scaled-up systems
of land-based integrated finfish aquaculture operations,
and compared this with Asian species.

Materials and methods

Porphyra amplissima (strain ME7-4), P. purpurea
(strain NY4-1), P. purpurea (strain ME40-4), P. um-
bilicalis (strain ME6-9), P. dentata (origin of strain un-
known from Pusan, South Korea, courtesy of J. Lee),
P. katadai (strain PKTF99), and P. yezoensis (strain
PYWT2001039A) were grown from conchospores at
15 ◦C and under 12:12 h; L:D photoperiod at the Marine
Biotechnology Laboratory of the University of Con-
necticut at Stamford laboratories. The first three species
are native to the northeast coast of North America,
while the latter three species are Asian in origin. Blades
were cultured for at least two weeks at the measurement
temperature in von Stosch-enriched (Ott, 1965) Long
Island Sound seawater (collected at Avery Point, CT)
at 50 µmol photons m−2 s−1 under a 12:12 h; L:D
photoperiod. The stocking density during culture was
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approximately 0.5 g FW L−1. During the two week ac-
climation period the culture medium was changed ev-
ery 3–4 days, with the last change done one day before
the uptake measurements. These blades were consid-
ered nutrient replete because the acclimation incuba-
tion medium contained 500 µM inorganic nitrogen (N)
and tissue N contents were approximately 5% DW. For
some incubations (N deprivation treatment), blade tis-
sue was left in the growth medium for seven days after
a media change, after which tissue N levels were down
to 2.9% DW and there had been a visible decrease in
pigmentation.

Blades were separated into lots of ca. 0.3 g fresh
weight (FW). These blades were kept moist with
growth medium and covered to protect from high light.
The incubation medium for the measurements was ar-
tificial seawater (Harrison et al., 1980) that was pH-
adjusted to 8.2 with 1 M NaOH and spiked with NH+

4
or NO−

3 to concentrations ranging from 10–150 µM N.
The inorganic N stock (5000 µM) was prepared fresh
before each uptake measurement.

A volume of 30 mL of spiked incubation medium
was placed in a translucent plastic 50 mL tube. Five–
seven replicate tubes were prepared for each N con-
centration. The blade portions of ca. 0.3 g FW were
introduced, the tubes shaken, and the timer started. The
irradiance incident on the blades was 150 µmols m−2

s−1 for most measurements after absorption of a por-
tion of the incoming light by the plastic. This exceeded
intensities required to saturate photosynthesis in these
cultures (Kraemer & Yarish, 1999). An irradiance of
40 µmols m−2 s−1 was used to test for a low versus
high light effect on N uptake. The contents of the tubes
were mixed by rolling every two minutes to prevent the
build-up of boundary layers around the blade surfaces.

Samples of the medium were taken at 7 and 17 min
after introduction of the Porphyra tissue. Samples were
placed into acid-washed 5 mL glass tubes. For NH4

+

concentrations of 10–40µM, 1 mL samples were taken,
while 0.2 mL samples were taken from the concentra-
tions ≥75 µM and these were diluted to 1.00 mL using
the artificial seawater solution. Six replicate standards
at 0 and 20 µM inorganic N (made with artificial sea-
water) were also analyzed.

The NH4
+ concentrations were analyzed using the

procedures outlined in Liddicoat et al. (1975), with vol-
umes reduced to analyze 1 mL seawater samples. To
each of the glass tubes containing samples of the incu-
bation medium, 40 µL of phenol-alcohol reagent (1 g
phenol in 5 mL 95% ethanol) were added and the tubes
were vortexed. Next, 100 µL of the oxidizing reagent

(0.040 g sodium dichloroisocyanurate in 4 mL of 1 M
NaOH, 4 mL 50%, (w/v) trisodium citrate, and 2 mL
dH2O) were added and the tubes mixed. Finally, 40 µL
of catalyst (0.050 g potassium ferrocyanide in 5 mL
dH2O) were added and mixed. The oxidizing reagent
and catalyst were both made fresh for each experiment.
The tubes were placed in open-mesh metal racks and
left for 1 h under UV illumination in a sterile hood to
drive color development. Concentrations were obtained
from the absorbances measured at 640 nm.

Nitrate concentrations were estimated using pro-
cedures modified from Jones (1984). Spongy cad-
mium (Cd) was generated by placing zinc bars in 20%
(wt/vol) CdSO4. The precipitated Cd was removed,
washed with water and broken into small pieces. The
pieces were washed with 6N HCl and rinsed with co-
pious quantities of distilled water (until pH > 5) and
maintained under water with no air contact. Samples
of the incubation medium (1 mL) were placed in 1.5
mL Eppendorf microcentrifuge tubes. An aliquot (160
µL) of 0.7 M NH4Cl (pH adjusted to 8.5) was added
to each sample and mixed. A piece of Cd metal (ca. 35
mm2) was removed from the water, blotted briefly onto
a paper towel to remove the excess water, and placed
into each Eppendorf tube. The sealed tubes were gen-
tly shaken at 5-min intervals for 40 min, during which
time the NO3

− was reduced to NO2
−. A volume of

1.0 mL was removed from each Eppendorf tube and
transferred to a glass test tube and mixed with 60 µL
of 2% sulfanilamide (w/v 10% HCl). This mixture was
allowed to stand for about 5 min and then 60 µL 0.2%
N-1-napthyl-ethylenediamine (w/v dH2O) were added
and mixed. Absorbances were read at 543 nm after al-
lowing at least 10 min for color development.

Porphyra blade tissue from each tube was rinsed
in distilled, deionized H2O, dried for 48 h at 60 ◦C
overnight, and weighed. Uptake rates (during the 7–
17 min interval) were standardized to dry weight. Ini-
tial comparisons were made to ascertain the effects
of irradiance during incubation, NO3

− versus NH4
+,

and N-deficient versus N-replete tissue on rate of up-
take. Rates were analyzed using ANOVA procedures
(Statistica

R©
) and, when the main effects were sig-

nificant, pairwise mean comparisons were made us-
ing Tukey’s Honest Significant Difference test. The
data from all species were first analyzed together,
and then separated according to species. Data from
10 and 15 ◦C were analyzed to predict performance
under conditions most closely approximating effluent
conditions reported by our partner, Great Bay Aqua-
culture, LLC (G. Nardi, personal communication).
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Table 1. Results of ANOVA examining the effects of various treatments on the uptake of inorganic nitrogen (N) by Porphyra
purpurea.

Treatment Factor F-value p-level Rank order of main factors

A. Low light vs. high light Light (L) 13.2 0.0010 150 > 40 (µmol m−2 s−1)

NH4
+ conc (AC) 63.2 <0.00005∗ 150 > 40 > 20 (µM)

L × AC 0.70 0.51

B. NO3
− vs. NH+

4 uptake Source (S) 3.0 0.11

N conc (NC) 6.1 0.0078∗ (20 = 40) < 75 < 150 (µM)

S × NC 0.2 0.87

C. Deprived vs. replete Pre-acclimation (PA) 4.9 0.036∗ Deprived > replete

NH4
+ conc (AC) 10.1 0.005∗ 75 > 40 > 20 (µM)

PA × AC 1.9 0.089

A Michaelis-Menten curve was fit to the relation-
ship between NH4

+ concentration and uptake rate at
15 ◦C, assuming a non-zero intercept (Naldi & Viaroli,
2002). The ratio Vmax/KS, the slope of the Michaelis–
Menten equation at low N concentrations, was also
calculated.

Results

The rate of NH4
+ uptake by P. purpurea blades, pre-

acclimated to produce nutrient-replete tissue, varied
significantly under the three incubation irradiances (20
versus 150 µmol photon m−2 s−1; Table 1; Figure 1).
However, uptake rate was significantly (p < 0.00005)
affected by the concentration of NH+

4 in the media. Av-
erage uptake rates were 71% higher under 150 µmol
photons m−2 s−1 irradiance than under the lower ir-
radiance. The uptake of NH+

4 and NO−
3 did not differ

Figure 1. Effects of ammonium concentration and irradiance on the
rate of uptake by Porphyra purpurea at 10 ◦C (n = 5−6). Error bars
represent ± one SD.

over the four concentrations examined when tissue had
been N-deprived for a week (Table 1, Figure 2). Pre-
treatment had a significant effect on the rate of NH+

4
uptake; N-deprived blades had average uptake rates that
were 30–178% higher than blades from cultures whose
medium had been replaced the day prior to measure-
ment (Table 1, Figure 3).

The most complete data set included data for three
species, three temperatures, and five N concentra-
tions. Analysis of these data revealed significant main
treatment effects, as well as significant interactions
(Table 1). The rate of N uptake increased with increas-
ing N concentration, ranking 150 µM > 75 µM >

40 µM > 20 µM > 10 µM. Although there were
species (P. amplissima > (P. purpurea = P. umbilicalis)
and temperature effects (10 ◦C > 5 ◦C > 15 ◦C), the
interactions argued that the data be examined by indi-
vidual species to better understand the effects of tem-
perature and N concentration on N uptake rate. The

Figure 2. Effects of nitrogen source (ammonium vs. nitrate) and
concentration on the rate of nitrogen uptake by Porphyra purpurea
at 15 ◦C (n = 3). Error bars represent ± one SD.
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Table 2. Results of ANOVA examining effects of various treatments on the uptake of NH4
+.

Data set Factor F value p-level Rank order of main factors

A. Complete set Species (S) 38.0 <0.0001∗ See text
N conc (NC) 24.1 <0.0001∗

Temperature (T) 302.8 <0.0001∗

S × NC 13.8 <0.0001∗

S × T 5.7 <0.0001∗

NC × T 3.8 0.00035∗

S × NC × T 1.7 0.043∗

B. P. amplissima NC 146.1 <0.0001∗ 150 > 75 > 40 > 20 > 10 (µM)

T 10.2 0.00017∗ 10 > (15 = 5) (◦C)

NC × T 1.90 0.078

C. P. purpurea NC 82.4 <0.0001∗ 150 > 75 > 40 > 20 > 10 (µM)

T 25.9 <0.0001∗ (5 = 10) > 15 (◦C)

NC × T 0.6 0.769

D. P. umbilicalis NC 88.1 <0.0001∗ (150 = 75) > 40 > 20 > 10 (µM)

T 15.1 <0.0001∗ 15 > (10 = 5) (◦C)

NC × T 0.2 0.94

E. 10 ◦C/150 µM NH4
+ Species 15.7 <0.0001∗ (amp = purp) > (kat = yezo = dent) > (umb)

F. 15◦C/150 µM NH4
+ Species 13.5 <0.0001∗ (amp = yezo = kat) > (kat = umb) > (umb > purp)

Note: amp: P. amplissima; dent: P. dentata; kat: P. katadai; purp: P. purpurea; umb: P. umbilicalis; yezo: P. yezoensis.

Figure 3. Effects of nutrient pre-treatment and incubation concen-
tration on the rate of ammonium uptake by Porphyra purpurea at
15 ◦C (n = 3). Error bars represent ± one SD.

effect of N concentration and temperature remained
significant for all species (Table 2). The pattern of the
temperature effect differed among the species; aver-
aged over all N concentrations, P. amplissima showed
a 10 ◦C uptake optimum (10 ◦C > 5 ◦C = 15 ◦C;
Figure 4). P. umbilicalis took up NH4

+ most rapidly
at 15 ◦C (15 ◦C > 10 ◦C = 5 ◦C), while P. purpurea
took up NH4

+ least rapidly at 15 ◦C (5 ◦C = 10 ◦C
15 ◦C). The best performers at 10 ◦C were P. am-

Figure 4. Effects of temperature and species on the uptake of am-
monium. Bars represent averages over all ammonium concentrations
(10, 20, 40, 75, 150 µM). Within a species, different letters signify
statistically different values, indicating an effect of temperature on
uptake.

plissima and P. purpurea, with similar, high uptake
rates. At the warmer temperature (15 ◦C), P. am-
plissima, P. yezoensis, and P. katadai all took up
NH4

+ at similar rates. Excluding non-native (i.e.
Asian) species, P. amplissima was clearly the best per-
former, with highest NH4

+ uptake rates under both
temperatures.
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Michaelis–Menten kinetics, fitted to uptake
rate data obtained from measurements at the
application-relevant temperature of 15 ◦C, gave esti-
mates (Vmax), the half-saturation NH4

+ concentration
(KS), and the predicted intercept (ST). Uptake of NH4

+

by P. amplissima did not saturate at concentrations
up to 150 µM; hence, the data could not be fitted
to the Michaelis–Menton equation. Rather, uptake
rates (10 and 20 µM only) were linearly regressed
onto N concentration to estimate the concentration
intercept (ST) only. Of the remaining species, P.
yezoensis showed the highest average Vmax (Figure
5). With the exception of P. yezoensis, ST values were
similar at ca. 6 µM NH4

+. Half-saturation constants
averaged 55 µM, with the exception of that for P.
katadai which was roughly three-times the average
value. No species showed a particularly high alpha
(Vmax/KS).

Figure 5. Average values of the maximum rate of ammonium uptake
(Vmax; µmol NH4

+ g−1 DW min−1), the ammonium concentration
at which uptake ceases (ST; µM), the half-saturation constant (KS;
µM), and the uptake efficiency (alpha; µmol NH4

+ g−1 DW min−1

µM−1). Data are derived from uptake curves under aquaculture con-
ditions (15 ◦C, 150 µM NH4

+). Error bars represent standard devi-
ations. Since uptake by Porphyra amplissima did not saturate over
the concentration range, only ST was estimated (linear regression of
10, 20 µM data). amp = P. amplissima, purp = P. purpurea, umb =
P. umbilicalis, kat = P. katadai, yezo = P. yezoensis.

Discussion

The objective of this study was to collect physiological
measurements to guide the selection of an appropriate
species of Porphyra for a system of integrated aqua-
culture that couples the growth of marine macroalgae
and finfish. We have focused here on the bioremedia-
tory performance of the algal partner, although a full
evaluation of the suitability of candidate species must
include consideration of market potential (i.e. chemi-
cal properties determining taste and texture), as well
as biotechnological applications (Tamura et al., 1998;
Levine, 1998).

The results indicated that Porphyra amplissima is
the best candidate of the northeast American species
tested. Porphyra amplissima outperformed the other
taxa at 10 and 15 ◦C, two temperatures that fall within
the expected range for existing finfish operations at
Great Bay Aquaculture, LLC.(e.g., cod, halibut, black
sea bass; G. Nardi, personal communication). Signif-
icantly, the rate of nutrient uptake by P. amplissima
compared quite well with that of P. yezoensis, one of
the most important species cultivated in Asia. During
periods of maximal growth, rates of new tissue produc-
tion by these two species were similar (within 20%;
Carmona, Kraemer & Yarish, unpublished data).

The northeast American species showed definite
temperature optima. Results from larger scale (50 L)
experiments support the concept of temperature op-
tima (Day, 2003). Since aquaculture operations seek
to minimize costs, temperatures are not likely to be
modified beyond that which is necessary to opti-
mize production by the most valuable component of
the system (here, the finfish). Given this constraint,
crop rotation could optimize macroalgal production.
Even though our data point to P. amplissima as the
best performer under any of the temperatures em-
ployed, the existence of temperature optima sug-
gests that other Porphyra species (or geographical
isolates) could prove more valuable under specific
conditions.

In short-term measurements, the uptake of N was
not influenced by the form of inorganic N; ammonium
uptake rates were equivalent to rates of nitrate uptake
when presented separately. The ability of the macroal-
gae to remediate NH4

+-enriched effluent leaving flow-
through aquaculture systems is critical in meeting up-
graded water discharge standards. Additionally, some
of today’s aquaculture systems are recirculating de-
signs that include a bacterial biofilter to convert ef-
fluent NH4

+ to NO−
3 before recirculating the water
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back into the fish grow-out tanks. Finfish introduce
NH4

+ into the tank effluent, but can generally toler-
ate no more than 25–50 µM unionized ammonium
before metabolic effects and reduced growth occur
(e.g., Espey, 2001; Fuller et al., 2003; Lemaire et al.,
2004). Ammonium is unlikely to accumulate; P. am-
plissima assimilated both forms of inorganic N when
presented simultaneously, removing NH+

4 six times
faster than NO−

3 even when NO−
3 supply exceeds NH+

4
supply (data not shown). There is general concurrence
that growth on NH+

4 should in theory enable faster
growth rates than NO−

3 due to the energy savings asso-
ciated with the direct assimilation of NH+

4 into amino
acids (NO−

3 must first be reduced to NH+
4 ). How-

ever, there is little agreement regarding the efficacy
of the two forms of nitrogen in promoting growth of
rhodophytes. Hafting (1999) measured higher growth
rates under NO−

3 than NH+
4 when cultured under high

irradiance (160 µmol photons m−2 s−1), but equiv-
alent growth at lower intensities (50 µmol photon
m−2 s−1). Agardhiella subulata and Gracilaria tikva-
iae grew faster with NH4

+ as a N source (DeBoer
et al., 1978), while Hanisak (1990) reported identi-
cal growth rates for G. tikvaiae grown under the two
conditions.

Blades deprived of abundant inorganic N exhibited
higher rates of N uptake than did N-replete blades. This
finding is in line with other earlier work (D’Elia &
DeBoer, 1978; Smit, 2002). In part, NH+

4 may be dif-
fusing into the cell walls and intercellular spaces be-
fore it is taken up as the apparent free space comes
into equilibrium with the external medium. However,
the rapid influx of ions in P. perforata was limited to
“a few minutes” (Epply & Blinks, 1957). Higher rates
of uptake by N-deprived individuals (and during early
phases of incubation; Harrison & Hurd, 2001) also rep-
resent the filling of internal pools (Lobban & Harrison,
1997).

High values of the maximum uptake rate and/or
low half-saturation constants are desirable in an inte-
grated aquaculture application. The initial slope of the
concentration-uptake rate curve (α) provides one indi-
cation of bioremediatory ability. The KS value might
not seem relevant for the ultimate application because
under aquaculture conditions effluent entering Por-
phyra tanks is rich in inorganic N. However, N con-
centrations will fall during bioremediation, a function
of residence time, macroalgal stocking density, and
the physical conditions of temperature and light, all
factors influenced by the engineering and operating
requirements of the system (Hernandez et al., 2002;

Neori et al., 1998; Schuenhoff et al., 2003). Paral-
lel semi-batch experiments at lower stocking densi-
ties (0.3 g FW L−1) showed a 95% reduction in in-
organic N after only 3 days, making lower KS (and
higher α) more desirable since this supports higher
growth rates. The irradiance effect, visible in the com-
parison of uptake rates at 40 and 150 µmol photons
m−2 s−1, has obvious implications to the aquaculture
of macroalgae. Hafting (1999) reported that growth
rates were elevated at higher light levels, an effect re-
quiring increased supply of N. Macroalgal yield and,
hence, bioremediation under nutrient-enriched condi-
tions depend on the interaction between stocking den-
sity and growth rate. Increased culture density raises the
amount of the biomass capable of producing new tis-
sue, but reduces the tissue-specific growth rate through
a reduction in irradiance. Work to identify the stock-
ing density that optimizes yield is underway as part
of an effort to model the production and bioremedia-
tion by Porphyra grown under conditions of integrated
aquaculture.

P. yezoensis (and probably other Porphyra species)
demonstrate limited storage of N (Hafting, 1999;
Hernandez et al., 2002). Some N, not devoted immedi-
ately to growth, can be sequestered as photosynthetic
pigments, free amino acids, and proteins (cf. Mar-
tinez & Rico, 2002; Naldi & Wheeler, 1999; Smit et
al., 1997). The relationships among external N avail-
ability, the form in which N is sequestered internally,
and growth rate can be complex. However, since the
primary goal of this project is the bioremediation of
nutrient-loaded effluent from finfish aquaculture, the
ultimate destination of assimilated N is now only of
secondary concern. To accurately predict the economic
benefits of integrating seaweed and finfish culture, fu-
ture studies are needed to evaluate the fates of N and
their impacts on the biomass as a food or biochemical
product.

P. amplissima proved to be the best performer of
the northeast American species tested in these short-
term measurements of inorganic N uptake. We have
begun to test this and other species at larger spa-
tial and temporal scales, finding correspondence in
the scale-up. For example, over 28 days in 1-L vol-
umes renewed every 3–4 days, P. amplissima demon-
strated the fastest rates of growth and N removal from
the culture medium (Carmona et al., in press). A pi-
lot scale project is currently underway using a flow-
through system of 3000-L Porphyra growth tanks to
further validate the results of prior work (Yarish et al.,
2001).
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