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Abstract Porphyra is one of the world’s most valued
maricultured seaweeds and has been cultivated for several
hundred years in Asia. The objective of this study was to
produce critical information as a guide for the selection of
an appropriate Porphyra species from coastal New England
for the development of a land-based aquaculture system.
Four Northwest Atlantic Porphyra species: P. leucosticta, P.
amplissima, P. linearis and P. umbilicalis, were cultivated
for 1 and 2 weeks at saturated light intensities (100–
150 μmol photons m−2s−1) and six combinations of
ammonium (25 and 250 μmoles L−1) and temperature (10,

15 and 20°C). Specific growth rate (SGR) increased with
decreasing temperature in P. leucosticta, P. linearis and
P. umbilicalis and increased with increasing temperature in
P. amplissima. The SGR of all species was greater at the
higher ammonium concentration. Porphyra linearis had the
highest SGR, increasing in biomass by approximately 16%
day−1. Phycoerythrin (PE) content was higher at 10°C and
250 μmoles L−1 in all species except P. amplissima. The PE
content, measured as fresh weight (FW), of P. linearis
(29 mg g−1 FW−1) and P. umbilicalis (26 mg g−1 FW−1)
was significantly higher than the other two species. Tissue
nitrogen content of all species measured in dry weight was
on average 1.45% higher at 250 μmoles L−1 than at
25 μmoles L−1 ammonium concentration. Porphyra umbil-
icalis had the highest tissue nitrogen contents (6.76%) at
10°C and 250 μmoles L−1 ammonium. Based on these
results, P. linearis and P. umbilicalis should be considered
as potential candidates for bioremediation with finfish and
shellfish mariculture.

Key words Porphyra . nutrient uptake . temperature .

ammonium . bioremediation . mariculture

Introduction

An emerging problem of coastal fish mariculture is the
loading of inorganic nutrients into local waters (Beveridge
1987), which contributes to blooms of phytoplankton and
weedy macroalgae (Cuomo et al. 1993). Reducing the net
release of nutrients into the environment is, therefore, an
important issue; bioremediation of fish mariculture effluent
is an option that provides both ecological and economic
incentives. Integrated aquaculture, in which seaweeds are
grown downstream from the animals, is a process of
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bioremediation. It can reduce nutrient loading in coastal
waters because the nitrogen (N) and phosphorus (P) in the
animal effluent enable rapid growth of the seaweeds.
Obviously, the best seaweed to integrate into an animal
aquaculture operation is the one characterized by rapid
growth, high accumulation of N and P in tissue (ecological
value), and high commercial price (economic value; Troell
et al. 2003; Kraemer et al. 2004; Neori et al. 2004;
Carmona et al. 2006; Pereira et al. 2006). Therefore,
knowledge of ecological and physiological aspects of
seaweed growth are a very important part of the develop-
ment of an integrated aquaculture system.

Nitrogen has traditionally been considered the limiting
nutrient in temperate oceans both for phytoplankton
(Twomey and Thompson 2001) and seaweed communities
(Lobban and Harrison 1994; Harrison and Hurd 2001).
Generally, nitrogen addition increases photosynthetic activ-
ity and growth of seaweeds. Nitrogen is an indispensable
element incorporated in to many organic macromolecules
(proteins, nucleic acids and pigments). Synthesis of
chlorophyll a (Chl a) and phycoerythrin (PE) also requires
N (Lobban and Harrison 1994). On average, proteins
contain about 15% N, nucleic acids about 13% N and PE
is comprised of up to 20% N (e.g., Harrison and Hurd
2001). Depending upon the polysaccharide content, algae
may contain between 3–10% N by dry weight (Ryther et al.
1981; Harrison and Hurd 2001; Carmona et al. 2006;
Pereira et al. 2006).

In general, algae can use a wide variety of nitrogenous
compounds to fulfill their N requirements: ammonia,
nitrate, urea, amino acids and nucleosides may be taken
up from the growth medium (Lobban and Harrison 1994),
with NO�

3 and NHþ
4 being the primary sources in most

circumstances. Some seaweeds, such as Gelidium nudifrons
(Bird 1976) and Laminaria groenlandica (Harrison et al.
1986), take up NO�

3 and NHþ
4 simultaneously and at the

same rate. Thus, these species have the potential to
assimilate more N per unit time if provided both forms of
N than if limited to only one N form for uptake. However,
in many species, NHþ

4 inhibits the uptake of NO�
3 by up to

50% (Conway 1977; DeBoer 1981). For instance, NHþ
4

concentrations in the range 0.5–10.0 μmoles L−1 suppress
NO�

3 uptake in phytoplankton cells by 50% (Conway
1977). Thalli of Gracilaria foliifera and Neoagardhiella
baileyi grown with NHþ

4 -N showed a greater biomass yield
than did NO�

3 -cultured thalli and appeared to be capable of
storing more N (DeBoer et al. 1978; Bird et al. 1982).
Exposure of Gracilaria tikvahiae to NHþ

4 -enriched seawa-
ter also led to greater levels of phycoerythrin than did
exposure to the same level of NO�

3 (Bird et al. 1982).
Porphyra yezoensis also prefers NHþ

4 in preference over
other nitrogen sources, such as NO�

3 , NO
�
2 , amino acid and

urea (Amano and Noda 1987).

The genus Porphyra (Bangiales, Rhodophyta) is capable
of rapid growth and is an efficient nutrient concentrator.
Recently Carmona et al. (2006) measured specific growth
rates of Porphyra species exceeding 25% day−1, and more
recent studies suggest this genus is capable of 45% day−1 in
the short-term (Kraemer, personal communication). Since it
consists of one or two cell layers, Porphyra has an
extremely high surface area to volume ratio. With all cells
taking up nutrients, it is capable of rapid assimilation and
growth (Kraemer et al. 2004; Neori et al. 2004; Carmona et
al. 2006; Pereira et al. 2006). In addition, Porphyra is a
valuable source of food and, in Asia, this seaweed is
commercially maricultured to supply a billion dollar (U.S.)
annual market (Yarish et al. 1999; FAO 2003; He and
Yarish 2006). Porphyra contains high levels of protein
(25–50%), vitamins (higher vitamin C than in oranges),
trace minerals and dietary fibers (Noda 1993). Eighteen
types of free amino acids have been reported, including
taurine, which has been found to reduce blood cholesterol
levels (Noda 1993). This alga is also a preferred source of
the red pigment r-phycoerythrin, which is utilized as a
fluorescent “tag” by the medical diagnostic industry
(Mumford and Miura 1988).

Porphyra has been cultivated for the past several
hundred years in Japan and has become one of the most
successful aquaculture industries in Japan, Korea and China
(Mumford and Miura 1988; FAO 2003). In coastal New
England, a commercially valuable Asian taxon, P. yezoen-
sis, was selected for aquaculture trials in part because little
was known of the biology of the native New England
Porphyra species. Porphyra yezoensis was not grown
successfully because the gametophyte was not well adapted
for the temperature and nutrient regimes of northeastern
Maine’s coastal environment (Yarish et al. 1998). There-
fore, selection of an appropriate local Porphyra cultivar is
necessary for a successful integrated aquaculture system.

A wide variety of biological factors, such as inter-
individual variability, nutritional history, type of tissue, life
history stage/age, surface area:volume ratio of the thallus,
and blade morphology, may influence the nutrient uptake
and growth. Young tissue exhibit higher rates of uptake and
growth than older tissue and therefore one must be careful
when uptake rates are determined only on portions of the
thallus (Kraemer and Yarish 1999). For example, the kelp
Laminaria groenlandica is a perennial plant wherein the
first year plants have higher uptake rates than the third year
plants (Harrison et al. 1986). Younger blades and small size
tissue of Porphyra yezoensis also grow at a significantly
higher rate than mature blades and large size tissue (Hafting
1999). To avoid these biological effects, materials size and
age should be considered.

The primary objective of this study was to collect
physiological measurements to guide the selection of an
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appropriate species of Porphyra (P. leucosticta, P. linearis,
P. umbilicalis and P. amplissima) from coastal New
England to be used in the development of an integrated
land-based aquaculture system. This will enable us to
compare the efficiency of different species of Porphyra as
nutrient scrubbers to decide which candidate would be best
suited for bioremediation. We present here results that
describe the influence of temperature and nutrient avail-
ability (ammonium concentration) on growth rate, phyco-
erythrin content, tissue N content and N removal from the
media.

Materials and methods

Algal material and culture

Porphyra amplissima (Kjellman) Setchell et Hus (ME-32p)
used in this study was in culture at the Marine Biotechnol-
ogy Laboratory of the University of Connecticut at
Stamford. The strain of Porphyra amplissima was original-
ly collected from Gore Point, Cobscook Bay, Maine, USA.
Porphyra leucosticta Thuret in Le Jolis was collected in the
mid intertidal zone at Groton and Waterford, Connecticut,
USA, in March and May 2002. Porphyra umbilicalis
Kützing and Porphyra linearis Greville were collected in
the upper intertidal zone at Rye, New Hampshire, USA, in
March 2003.

Experiments were carried out for 1 or 2 week(s) in 50L
tanks at saturating light intensities (100–150 μmol photons
m−2s−1; Kraemer and Yarish 1999). Two 50L tanks were
contained in each of 9 water baths. Temperature in each
water bath was controlled independently via 1,000-W
immersion heaters. Light was supplied by 400W Ceram-
alux lamps (Philips, Somerset, N.J.) placed above each pair
of tanks. Irradiance was measured by a light meter (LI-
185A, Li-Cor) and adjusted with neutral density filters.
Photoperiod was 12:12 h L:D. The culture medium was
filtered (0.45 μm) and UV-irradiated seawater with von
Stosch’s enrichment (Ott 1965) without nitrogen and
phosphorus. Nitrogen and phosphorus levels were regulated
by addition of ammonium (NH4Cl) and phosphate
(Na2HPO4) to cultures twice a week at a molar N:P ratio
of 10:1. The initial stocking densities of each tank for
P. leucosicta, P. linearis P. umbilicalis and P. amplissima
were 0.08, 0.1, 0.14 and 0.08 g L−1, respectively.

Acclimation

Porphyra leucosticta, P. umbilicalis and P. linearis, were
acclimated for 4–6 days in gently aerated, Avery Point
(Conn.) filtered seawater at 10°C and 50–100 μmol
photons m−2s−1 under a 12:12 L:D photoperiod. Filtered

seawater was renewed daily to maintain a stable nutrient
status in the algal tissues during acclimation. After
acclimation, discs (20 mm diameter) of P. leucosticta
and P. umbilicalis were punched from different blades and
cultivated for 2 days under the same conditions to allow
recovery from wounding effects (Drew 1983). Whole
blades (5×1 cm) of P. linearis and P. amplissima were
used. As the Porphyra amplissima had been grown in von
Stosch enriched seawater, an acclimation period was
considered unnecessary.

Experimental design

The experiments were conducted using a split-plot, ran-
domized complete block design, with temperature (three
levels) as main plots and ammonium (two levels) as
subplots, resulting in a total of six treatment combinations,
each with three replicates. The design accommodated
practical limitations in temperature and ammonium control:
three levels of temperature (10, 15 and 20°C) and two
ammonium concentration (25 and 250 μmoles L−1). The
ammonium and temperature levels reflect the range in
marine aquaculture (Day 2003; Carmona et al. 2006).

Measurements

At 1-week intervals, all of the biomass in each tank was
weighed (fresh weight; FW) and samples were taken for
dry weight and pigment analysis. The FW were obtained
after blotting the thalli dry with paper towels. Dry weight
(DW) and moisture content were calculated by drying a
sample of the biomass at 60°C to constant weight. Specific
growth rate (SGR, expressed as % increase day−1) was
calculated as follows:

SGR ¼ ln S2 � ln S1
T2 � T1

� 100

where S1 and S2 are the fresh weight at days T1 and T2,
respectively. PE was extracted using a modification of the
method of Beer and Eshel (1985). Approximately 100 mg
FW of tissue was ground in a mortar with pestle in 0.1 M
phosphate buffer (pH 6.5) and kept at 4°C before being
centrifuged at 19,000 g for 15 min. The supernatant was
analyzed with a Spectronic Genesys 5 spectrophotometer.
PE content was calculated according to the equations used
in Beer and Eshel (1985). For the analysis of tissue total N
and C content, samples were dried at 60°C before being
ground. The powder was analyzed using a Perkin Elmer
2400 series II CHNS/O elemental analyzer. Specific growth
rate, tissue PE, nitrogen and carbon content were deter-
mined weekly.
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N removal was calculated using the equation,

N removal mg N g�1day�1
� �

¼ Bt � Tissue Ntð Þ � B0 � Tissue N0ð Þ
BtþB0

2

� �
� t

� DW

FW

where Bt and Bo are the biomass at days t and 0
respectively. The difference in biomasss-specific nitrogen
removal ability between species and between conditions
can be compared with this method.

Statistical analysis

Two-way split-plot ANOVA (α=0.05) was used to analyze
data. When ANOVA indicated treatment effect of temper-
ature or an interaction between ammonium level and
temperature, Tukey’s HSD analysis (α=0.05) was used as
a post hoc test to determine pairwise comparison probabil-
ities between treatment level means. All statistic analyses
were done using Minitab (release 13, Minitab. State
College, Pa., USA).

Results

Growth

Temperature significantly influenced the growth rate of all
species. The growth rate of Porphyra leucosticta was
higher at 10 and 15°C than at 20°C (Fig. 1; p=0.01).
Porphyra linearis and P. umbilicalis grew fastest at 10°C
(Fig. 1). However, P. amplissima showed the higher growth
rate at 20°C than that at the lower temperatures (Fig. 1).

Nutrient availability also significantly influenced growth
rate. The growth rates of Porphyra linearis and P.
umbilicalis were significantly higher at 250 μmoles L−1

ammonium than that at 25 μmoles L−1 ammonium concen-
tration (Fig. 1; p≤0.022). Of the four species studied,
Porphyra linearis had the highest growth rate, increasing in
biomass by about 16% day−1 over 14 days at 10°C, while
other three species grew at about 10% day−1 at optimum
conditions.

Phycoerythrin content

The phycoerythrin (PE) content was affected by temperature
(p≤0.027) at high ammonium concentration in all species
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Fig. 1 Growth rate of Porphyra leucosticta*, Porphyra linearis**,
Porphyra umbilicalis** and Porphyra amplissima* grown at 10, 15
and 20°C and 25 and 250 μmoles L−1 ammonium. Error bars

represent standard error. Bars with the same letter are not significantly
different (p>0.05; *first week's results, **average results over first
2 weeks)
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except Porphyra amplissima (Fig. 2). The PE contents of P.
leucosticta were higher at 10°C than at other temperatures and
P. linearis and P. umbilicalis showed significantly higher PE
contents at 10 and 15°C. The PE content of P. linearis and P.
umbilicalis was on average 90% higher at 250μmoles L−1 than
at 25 μmoles L−1 ammonium concentration at all temperature

conditions (Fig. 2; p≤0.012). The PE content of P. linearis
(29 mg g−1 FW−1) and P. umbilicalis (26 mg g−1 FW−1) was
much higher than P. leucosticta and P. amplissima. For P.
linearis, the effect of temperature on PE content was greater at
high than at low ammonium levels; similar interactions were
not found in the other species.
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Table 1 Tissue C and N contents and C:N ratio of Porphyra leucosticta*, Porphyra linearis**, Porphyra umbilicalis** and Porphyra
amplissima* (Means±S.D; * : 1st week's results, ** : average results over 2 weeks)

C (%) N (%) C:N

25 μM 250 μM 25 μM 250 μM 25 μM 250 μM

P. leucosticta
10°C 38.31 (±0.10) 39.64 (±0.17) 2.63 (±0.06) 4.95 (±0.11) 14.58 (±0.33) 8.02 (±0.15)
15°C 51.13 (±8.64) 39.59 (±0.23) 3.58 (±0.64) 4.69 (±0.12) 14.40 (±0.23) 8.47 (±0.18)
20°C 38.06 (±0.30) 39.84 (±0.03) 2.25 (±0.08) 4.59 (±0.04) 16.98 (±0.61) 8.68 (±0.08)
P. linearis
10°C 37.82 (±0.43) 35.94 (±2.11) 4.60 (±0.52) 5.66 (±0.18) 8.27 (±0.84) 6.34 (±0.19)
15°C 37.08 (±0.78) 37.61 (±0.27) 4.73 (±0.15) 5.81 (±0.06) 7.85 (±0.09) 6.47 (±0.09)
20°C 38.62 (±1.66) 37.41 (±1.44) 4.79 (±0.45) 5.57 (±0.24) 8.02 (±0.54) 6.71 (±0.05)
P. umbilicalis
10°C 37.19 (±0.64) 38.82 (±0.30) 3.89 (±0.07) 6.76 (±0.27) 9.57 (±0.01) 5.75 (±0.28)
15°C 38.00 (±0.85) 39.64 (±1.85) 4.24 (±0.23) 6.62 (±0.31) 8.97 (±0.31) 5.99 (±0.01)
20°C 37.22 (±2.14) 39.46 (±0.55) 4.36 (±0.31) 6.31 (±0.43) 8.55 (±0.41) 6.27 (±0.47)
P. amplissima
10°C 37.09 (±1.48) 36.93 (±0.78) 3.71 (±0.12) 3.92 (±0.04) 10.00 (±0.08) 9.42 (±0.11)
15°C 32.42 (±6.06) 36.75 (±1.32) 3.28 (±0.41) 4.08 (±0.21) 9.86 (±0.61) 9.02 (±0.65)
20°C 34.91 (±2.34) 37.04 (±1.20) 3.56 (±0.34) 3.87 (±0.03) 9.85 (±0.86) 9.57 (±0.38)
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Carbon, nitrogen contents, and C:N ratio in tissue

Carbon contents of all species did not differ at different
temperature and ammonium concentrations (p>0.05), ex-
cept that carbon content of P. leucosticta at 25 μmoles L−1

and 15°C (51.13%) was higher than at other conditions.
Nitrogen values in tissue varied from 2.25% (P. leucosticta
at 25 μmoles L−1 and 20°C) to 6.76% (P. umbilicalis at
250μmolesL−1 and 10°C). Temperature alone had no effect
on tissue nitrogen content of any Porphyra species (p>
0.05). Ammonium concentration significantly affected
nitrogen content (p≤0.001) in all species. The tissue
nitrogen content of all species was on average 1.45%
higher in the DW at 250 μmoles L−1 than at 25 μmoles L−1

ammonium concentration. This percentage represents the
absolute difference between two values. Porphyra umbil-
icalis had the highest tissue nitrogen contents (6.76%) at
10°C and at 250 μmoles L−1 ammonium (Table 1). The
starting C:N ratio of the algae was between 7.2 and 9.5.
Lower C:N ratios were observed in all Porphyra species
grown at 250 μmoles L−1 than at 25 μmoles L−1 ammonium
concentration over 14 days. Porphyra leucosticta showed
the highest ratio (up to 16.98) under 25 μmoles L−1

ammonium (Table 1).

Nitrogen removal

The nitrogen removal ability of Porphyra was affected
by temperature and ammonium concentration. In

P. leucosticta, P. linearis and P. umbilicalis, N removal
decreased with increasing temperature and was higher at
high ammonium concentration than at low ammonium
concentration (Fig. 3). The highest N removal capability
of P. leucosticta occurred at 10 and 15°C; for P. linearis
and P. umbilicalis it was at 10°C, and for P. amplissima it
was at 20°C. The N removal of P. umbilicalis (1.30 mg
N g−1 day−1 DW) and P. linearis (1.28 mg N g−1 day−1

DW) was markedly higher than P. leucosticta at 10°C
and P. amplissima at 20°C (0.92 and 0.56 mg N g−1

day−1 DW, respectively) and 250 μmoles L−1 ammonium
concentration.

Discussion

Porphyra linearis grew at over 16% SGR, which was
significantly higher than that of other seaweeds being used
for integrated aquaculture, e.g., Laminaria saccharina (9%
day−1; Subandar et al. 1993), Gracilaria parvispora (10%
day−1; Nelson et al. 2001) and Ulva pertusa (12% day−1;
Kim and Han 1999). Porphyra umbilicalis has a high
capacity for nitrogen accumulation (6.76% tissue nitrogen
at optimal conditions). This value is also much higher than
that of other maricultured seaweeds, including Chondrus
crispus (4.8%; Asare and Harlin 1983), Gracilaria pacifica
(4.18–4.59%; Naldi and Wheeler 1999) and Laminaria
saccharina (3.42%; Gevaert et al. 2001). It is even
markedly higher than other efficient nutrient scrubbers
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such as Ulva rotundata, Ulva intestinalis, Ulva fenestrate
and Ulva pertusa (3.06%, 3.35%, 4.71% and 5.07%,
respectively; Liu and Dong 2001; Hernández et al. 2002).

Some species grow well under conditions in laboratory
that never occur in their native environment. For example,
the distribution of the red alga, Polyneura hilliae, indicates
that it grows well between 11 and 15°C. However, Yarish
et al. (1986) reported that the alga grew very well from 10
to 20°C under laboratory conditions. Below 5°C and above
25°C, temperatures never experienced in nature, Polyneura
hilliae died. Another red alga, Calliblepharis ciliata,
showed similar tendencies (Yarish et al. 1986). The
fundamental niche describes the environmental “space”
within which a species can survive and reproduce in the
absence of biotic interactions. Competition, predation, and
parasitism restrict organisms to the realized niche, only a
part of the fundamental niche (Hutchinson 1958). Temper-
ature is an important part of the ecological niche, a concept
that is often used to describe the range of tolerance
(Lampert and Sommer 1997). Hutchinson (1958) empha-
sized that organisms have ranges of tolerance for many
environmental factors, rather than only a single factor.
Stress in one abiotic factor may reduce the tolerance range
of another; the optimal environment in aquaculture most
probably broadens the environmental tolerance ranges
of some seaweeds. In the present study, P. leucosticta,

P. linearis and P. umbilicalis grew well at low temper-
ature similar to those of the natural habitat of its
gametophytes. However, P. amplissima attained the
highest growth rate at 20°C, a temperature above the
highest reached in the field (Chopin et al. 1999).

Porphyra amplissima gametophyte is present from
spring through autumn along the coast of Maine, where
sea surface temperatures generally range between 0–15°C
(Chopin et al. 1999; Yarish et al. 1999). Porphyra
leucosticta is common in winter/spring in Connecticut,
(USA) when water temperatures range between 1–16°C.
Therefore, P. leucosticta was expected to be at least as
tolerant of higher temperatures as P. amplissima because
P. amplissima is rarely found south of New Hampshire
(Chopin et al. 1999). However, Porphyra amplissima grew
well at high temperature, which demonstrated higher temper-
ature tolerance than the other three species. P. amplissima
gametophytes came from conchospores grown in the lab
without the effects of biotic interactions while other three
species came from the field which was previously exposed to
biotic interactions.

Recently, Day (2003) and Carmona et al. (2006)
reported for P. amplissima a specific growth rate of over
32% day−1 at 12°C and 25% day−1 at 15°C, respectively.
However, the growth rate of P. amplissima measured during
the present study was much lower, possibly due the effect
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of tissue age. Porphyra amplissima used in this study was
mature (over 10 cm), while Day (2003) and Carmona et al.
(2006) used younger blades. Young tissue has much higher
growth and nutrient uptake rate than older tissue (Kraemer
and Yarish 1999; Harrison and Hurd 2001).

The ability to store N has ramifications in management
techniques in algal aquaculture. Previous studies have
shown that Gracilaria is able to take up ambient N very
rapidly and store it in organic form for later use during
periods of N-limitation (Bird et al. 1982). Gracilaria can
obtain and store enough nitrogen for non-limited growth if
given a single pulse of nitrogen every 2 weeks (Ryther et al.
1981). This storage is reflected in thallus N contents (3–
5%), which can be substantially higher than those indicat-
ing N deficiency (1.5–2%; Ryther et al. 1981). Pigments
are sensitive to the N status of the algae and probably
decline due to growth and a lack of sufficient ambient N for
continued synthesis of the new pigments. Increases in the
chlorophyll a content with increases in cellular N are well
known for algae (Fogg 1965). Studies of the red alga
Gracilaria tikvahiae indicated that chlorophyll and carot-
enoid pigments did not contribute greatly to the overall N
content (Bird et al. 1982).

Our results indicate a storage function for phycoery-
thrin (PE) pigments in Porphyra tissue (except for
P. leucosticta; Fig. 4). At 250 μmoles L−1 ammonium
level, pigment and tissue N contents were significantly
greater than those at lower level of ammonium. This
supports other studies that arrived at the same conclusion
(Carmona et al. 2006). PE comprised 20% of total N but
decreased markedly under N-limitation (e.g., Harrison and
Hurd 2001). PE as a ratio of total protein decreased when
tissue N content fell below 1.8% (Bird et al. 1982). Perhaps
at incipient N limitation these pigments are preferentially
utilized to support continued growth. Porphyra linearis
and P. umbilicalis exhibited much higher PE contents (276
and 205 mg g−1 DW−1 respectively; calculated from PE
contents FW−1) than that reported for P. yezoensis (40–
60 mg g−1 DW−1; Yan et al. 2000) grown under nutrient
enriched conditions. The high PE and tissue N contents
may explain how P. umbilicalis and P. linearis can remove
N at higher rates (1.30 mg N g−1 day−1 DW and 1.28 mg
N g−1 day−1 DW respectively) than the other two species
(Fig. 3).

In many coastal areas, blooms of fast-growing opportu-
nistic seaweeds have replaced the previously dominant
species. Such blooms may be due to increased loading of
inorganic nutrient into the seawater, decreased herbivore
activity, global warming, or a combination of these effects
(Raffaelli et al. 1998). The former is potentially controlla-
ble. Fish farms are a major source of released nutrients
(Ackefors and Enell 1994). All species of Porphyra used in
this study thrived in ammonium concentrations as high as

those measured in fish farm effluent (Day 2003), and had
much higher growth rates (10–16% day−1) than under
natural lower ammonium concentration.

The efficiency of the different species of Porphyra as
nutrient scrubbers, as well as the economic potential,
temperature range and growth ability may be examined to
decide which candidate(s) would be best suited for
bioremediation of aquaculture effluent. Porphyra leucos-
ticta and P. linearis exhibit excellent gustatory properties
(Chopin et al. 1999), while P. umbilicalis and P. amplissima
may be marketable for a variety of industrial and
biotechnological uses (taurine and r-phycoerythrin; Chopin
et al. 1999; Carmona et al. 2006). Our results indicate the
possibility of inter-specific variation in growth, N accumu-
lation and PE content as functions of temperature and
ammonium availability. For year-round ammonium remov-
al and production of Porphyra and phycobiliprotein,
several species should be used in rotation according to
their seasonality (Day 2003; Kraemer et al. 2004).
Porphyra has two phages, the gametophytic blade and a
microscopic conchocelis (sporophytes). The transition
between life history stages may limit the use of Porphyra
for bioremediation throughout the year. The rotation of
different species may be a solution to set off the
disadvantage of having the conchocelis phage for aquacul-
ture use.

Our study demonstrated that P. linearis and P. umbilicalis
had high PE contents, as well as high nitrogen uptake and
fast growth, making these species candidates for bioreme-
diation of effluents from land-based finfish and shellfish
mariculture. The growth of Porphyra may be affected by
contaminations such as heavy metals or persistent organic
compounds. Therefore, Porphyra may not be suited for the
open water system or sewage treatment, but can be used for
an integrated land-based aquaculture system which can
control most of contaminations.

Porphyra amplissima grew well at the high temperature
(20°C) condition, but the apparent low nutrient uptake
capability and low PE content seem to make this species
less suitable for bioremediation. Early life history stages
usually have higher nutrient uptake and growth rates than
mature thalli of the same species (Kraemer and Yarish
1999). Therefore, further study of the effect of temperature
on the bioremediatory performance of young P. amplissima
tissue should be performed if this species is to be utilized at
high temperature.

Acknowledgements We thank Dr. T. Bray and J. Day (Univer-
sity of New Hampshire) for their kind help in collecting materials
of P. linearis and P. umbilicalis in Rye, N.H. We thank A. Lima,
P. Boardman and D. Arbige for assistance with tank system
management in the Rankin Laboratory, University of Connecticut
at Avery Point. We also thank Drs. R. Carmona, S. Miller and
R. Pereira who assisted in the Marine Biotechnology Laboratory,

438 J Appl Phycol (2007) 19:431–440



University of Connecticut at Stamford. Finally, we thank to two
anonymous reviewers for invaluable comments. This study was
supported by grants to C. Yarish from the State of Connecticut’s
Critical Technologies Program, The Mohegan Tribal Nation, Connect-
icut Sea Grant College Program and grants to C. Yarish, G.P. Kraemer
and C.D. Neefus from National Oceanic and Atmospheric Adminis-
tration’s National Marine Aquaculture Initiative (DOC/U.S.A.).

References

Ackefors H, Enell M (1994) The release of nutrients and organic
matter from aquaculture systems in Nordic countries. J Appl
Ichthyol 10:225–241

Amano H, Noda H (1987) Effect of nitrogenous fertilizers on the
recovery of discolored fronds of Porphyra yezoensis. Bot Mar
30:467–473

Asare SO, Harlin MM (1983) Seasonal fluctuations in tissue nitrogen
for five species of perennial macroalgae in Rhode Island Sound. J
Phycol 19:254–257

Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin
concentrations in aqueous crude extracts of red algae. Aust J Mar
Freshw Res 36:785–792

Beveridge MCL (1987) Cage aquaculture. Fishing News Books,
Farnham

Bird KT (1976) Simultaneous assimilation of ammonium and nitrate
by Gelidium nudifrons (Gelidiales: Rhodophyta). J Phycol
12:238–241

Bird KT, Habig C, DeBusk T (1982) Nitrogen allocation and storage
patterns in Gracilaria tikvahiae (Rhodophyta). J Phycol 18:344–
348

Carmona R, Kraemer GP, Yarish C (2006) Exploring Northeast
American and Asian species of Porphyra for use in an integrated
finfish-algal aquaculture system. Aquaculture 252:54–65

Chopin T, Yarish C, Wilkes R, Belyea E, Lu S, Mathieson A (1999)
Developing Porphyra/salmon integrated aquaculture for biore-
mediation and diversification of the aquaculture industry. J Appl
Phycol 11:463–472

Conway HL (1977) Interactions of inorganic nitrogen in the uptake
and assimilation by marine phytoplankton. Mar Biol 39:221–
232

Cuomo V, Merrill J, Palomba I, Perretti A (1993) Systematic
collection of Ulva and mariculture of Porphyra: biotechnology
against eutrophication in the Venice Laggon. Int J Environ Stud
43:141–149

Day JP (2003) Effects of light and ammonium on growth, N uptake
and pigmentation of P. umbilicalis Kützing, Porphyra linearis
Greville, P. leucosticta Thuret in Le Jolis, Porphyra amplissima
Kjellman. MS thesis, University of New Hampshire

DeBoer JA (1981) Nutrients. In: Lobban CS, Wynne MJ (eds) The
biology of seaweeds. Blackwell Scientific, Oxford, pp 365–391

DeBoer JA, Guigli HJ, Israel TL, D’Elia CF (1978) Nutritional studies
of two red algae. I. Growth rate as a function of nitrogen source
and concentration. J Phycol 14:261–266

Drew EA (1983) Physiology of Laminaria I. Use of excised lamina
discs in short and long term experiments. Mar Ecol 4:227–250

FAO (2003) Food and Agriculture Organization of the United Nations.
http://www.fao.org/unfao/bodies/conf/c2003/c2003-e.htm

Fogg GE (1965) Algal cultures and phytoplankton ecology. The
University of Wisconsin Press, Madison

Gevaert F, Davoult D, Creach A, Kling R, Janquin MA, Seuront L,
Lemoine Y (2001) Carbon and nitrogen content of Laminaria
saccharina in the eastern English Channel: biometrics and
seasonal variations. J Mar Biol Assoc UK 81:727–734

Hafting JT (1999) A novel technique for propagation of Porphyra
yezoensis Ueda blades in suspension cultures via monospres. J
Appl Phycol 11:361–367

Harrison PJ, Hurd CL (2001) Nutrient physiology of seaweeds:
application of concepts to aquaculture. Cah Biol Mar 42:71–82

Harrison PJ, Druehl LD, Lloyd KE, Thompson PA (1986) Nitrogen
uptake kinetics in three year-classes of Laminaria groenlandica
(Laminariales: Phaeophyta). Mar Biol 93:29–35

He P, Yarish C (2006) The developmental regulation of mass cultures
of free-living conchocelis for commercial net seeding of
Porphyra leucosticta from Northeast America. Aquaculture
257:373–381

Hernández I, Martínez-Aragón JF, Tovar A, Pérez-Lloréns JL, Vergara
JJ (2002) Biofiltering efficiency in removal of dissolved nutrients
by three species of estuarine macroalgae cultivated with sea bass
(Dicentrarchus labrax) waste waters 2. Ammonium. J Appl
Phycol 14:375–384

Hutchinson GE (1958) Homage to Santa Rsalia, or why are there so
many kinds of animals. Am Nat 91:145–159

Kim JK, Han T (1999) Effects of inorganic nutrients and heavy metals
on growth and pigmentation of the green alga, Ulva pertusa
Kjellman. Korean J Environ Biol 17:427–438

Kraemer GP, Yarish C (1999) A preliminary comparison of the
mariculture potential of Porphyra purpurea and Porphyra
umbilicalis. J Appl Phycol 11:473–477

Kraemer GP, Carmona R, Chopin T, Neefus C, Tang X, Yarish C
(2004) Evaluation of the bioremediatory potential of several
species of the red alga Porphyra using short-term measure-
ments of nitrogen uptake as a rapid bioassay. J Appl Phycol
16:489–497

Lampert W, Sommer U (1997) Limnoecology: the ecology of lakes
and streams. Oxford University Press, pp 48–49

Liu JW, Dong SL (2001) Comparative studies on utilizing nitrogen
capacity between two macroalgae Gracilaria tenuistipitata var.
liui (Rhodophyta) and Ulva pertusa (Chlorophyta). I. Nitrogen
storage under nitrogen enrichment and starvation. J Environ Sci
(China) 13:318–322

Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology.
Cambridge University Press, New York

Mumford TF, Miura A (1988) Porphyra as food: cultivation and
economics. In: Lembi CA, Waaland JR (eds) Algae and human
affairs. Cambridge University Press, London, pp 87–117

Naldi M, Wheeler PA (1999) Changes in nitrogen pools in Ulva
fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta)
under nitrate and ammonium enrichment. J Phycol 35:70–77

Nelson SG, Glen EP, Conn J, Moore D, Walsh T, Akutagawa M
(2001) Cultivation of Gracilaria parvispora (Rhodophyta)
shrimp-farm effluent ditches and floating cages in Hawaii: a
two-phage polyculture system. Aquaculture 193:239–248

Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling
C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale,
evolution and state of the art emphasizing seaweed biofiltration
in modern mariculture. Aquaculture 231:361–391

Noda H (1993) Health benefits and nutritional properties of nori. J
Appl Phycol 5:255–258

Ott FD (1965) Synthetic media and techniques for the xenic
cultivation of marine algae and flagellate. Va J Sci 16:205–218

Pereira R, Yarish C, Sousa-Pinto I (2006) The influence of stocking
density, light and temperature on the growth, production and
nutrient removal capacity of Porphyra dioica (Bangiales,
Rhodophyta). Aquaculture 252:66–78

Raffaelli DG, Raven J, Poole L (1998) Ecological impact of
macroalgal blooms. Oceanogr Mar Biol Annu Rev 36:97–125

Ryther JH, Corwin N, DeBusk TA, Williams LD (1981) Nitrogen
uptake and storage by the red alga Gracilaria tikvahiae
(McLachlan, 1979). Aquaculture 26:107–115

J Appl Phycol (2007) 19:431–440 439

http://www.fao.org/unfao/bodies/conf/c2003/c2003-e.htm


Subandar A, Petrell RJ, Harrison PJ (1993) Laminaria culture for
reduction of dissolved inorganic nitrogen in salmon farm
effluent. J Appl Phycol 5:455–463

Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N,
Yarish C (2003) Integrated mariculture: asking the right ques-
tions. Aquaculture 226:69–90

Twomey L, Thompson P (2001) Nutrient limitation of phytoplankton
in a seasonally open bar-built estuary: Wilson Inlet, Western
Australia. J Phycol 37:16–29

Yan X, Fujita Y, Aruga Y (2000) Induction and characterization of
pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodo-
phyta). J Appl Phycol 12:69–81

Yarish C, Breeman AM, van den Hoek C (1986) Survival
strategies and temperature responses of seaweeds belonging
to different biogeographic distribution groups. Bot Mar 29:215–
230

Yarish C, Wilkes R, Chopin T, Fei XG, Mathieson AC, Klein
AS, Neefus CD, Mitman GG, Levine I (1998) Domestica-
tion of indigenous Porphyra (nori) species for commercial
cultivation in Northeast America. World Aquac 29:26–29,
55

Yarish C, Chopin T, Wilkes R, Mathieson AC, Fei XG, Lu S (1999)
Domestication of nori for Northease America: the Asian
experience. Bull Aquacult Assoc Can 1:11–17

440 J Appl Phycol (2007) 19:431–440

View publication statsView publication stats

https://www.researchgate.net/publication/225665274

	Effects...
	Abstract
	Introduction
	Materials and methods
	Algal material and culture
	Acclimation
	Experimental design
	Measurements
	Statistical analysis

	Results
	Growth
	Phycoerythrin content
	Carbon, nitrogen contents, and C:N ratio in tissue
	Nitrogen removal

	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


