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A B S T R A C T   

Wastewater and activated sludge present a major challenge worldwide. Wastewater generated from large and 
small-scale industries, laundries, human residential areas and other sources is emerging as a main problem in 
sanitation and maintenance of smart/green cities. During the last decade, different technologies and processes 
have been developed to recycle and purify the wastewater. Currently, identification and fundamental consid-
eration of development of more advanced microbial-based technologies that enable wastewater treatment and 
simultaneous resource recovery to produce bioenergy, biofuels and other value-added compounds (organic acids, 
fatty acids, bioplastics, bio-pesticides, bio-surfactants and bio-flocculants etc.) became an emerging topic. In the 
last several decades, significant development of bioprocesses and techniques for the extraction and recovery of 
mentioned valuable molecules and compounds from wastewater, waste biomass or sludge has been made. This 
review presents different microbial-based process routes related to resource recovery and wastewater application 
for the production of value-added products and bioenergy. Current process limitations and insights for future 
research to promote more efficient and sustainable routes for this under-utilized and continually growing waste 
stream are also discussed.   

1. Introduction 

The concept of wastewater management broadly encompasses the 
efficient treatment and appropriate reutilization of different types of 
wastewaters in a sustainable and ecologically friendly manner (Meena 
et al., 2019). It is one of the cornerstones of a circular economy and a 
major focus of research in the present scenario of mitigating water 
scarcity (Hossain et al., 2020; Nagarajan et al., 2020). Recycled water 
can be exploited in gardening, agriculture and land conditioning. In 
addition, wastewater is often a rich source of numerous commercially 
important organic compounds which are present in free or combined 
form, albeit in small quantities (Rajasulochana and Preethy, 2016). 
Valuable resource present in wastewater is becoming increasingly 
prevalent and this can be recovered using microbes. During biological 

wastewater treatment two important aspects are combined. Firstly, the 
pollutants are removed, and, secondly, the economically important 
compounds are produced (Fig. 1). An integrated system involving 
wastewater treatment and CO2 sequestration for the retrieval of 
value-added compounds and biofuel production is the new aspiration of 
wastewater management (Bhardwaj et al., 2021; Verma et al., 2020). 
Wastewater generated from the different process can be treated in 
common treatment plants, where the sludge obtained from the treat-
ment process can be utilized as feedstock for the anaerobic digestion 
(AD) plant (da Silva Vilar et al., 2021). The effluent from AD can be 
further used for the cultivation of microalgae. Further, the microalgal 
biomass can be sequentially utilized as a feedstock for the production of 
bioplastics (biopolymers), biofuels and broad a range of different 
bioactive compounds (Cinar et al., 2020; Mehariya et al., 2021). 
Recently, photocatalysis appeared as one of the emerging technologies 
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to treat the wastewater and remove the various hazardous contaminants 
from the effluents (Bharath et al., 2021; Rana et al., 2021; Sharma et al., 
2021a; Soni et al., 2021; Tran et al., 2021; Wang et al., 2021). Thus, the 
wastewater treatment and resource recovery using microorganisms can 
help to control waste stream and close material loops. Despite of these 
obvious advantages, the processes and technology used for this purpose 
should be very carefully selected with respect to the specialized ach-
ievability, straightforwardness, financial considerations, cultural re-
quirements and political needs. Scrupulous planning and research 
should be undertaken to adapt the process specifically to the origin and 
components of the wastewater, the bioavailability of the organic com-
pounds, and the oxygen and nutrient requirements of the preferred 
microbial species for the production of economically important prod-
ucts. Huge amount of different wastewaters leads to the development of 
different processes combining wastewater management and production 
of industrially-relevant products that are corresponding to circular 
bioeconomy rules. The wastewater management through microbial 
processes and efficient production of bioenergy, biosurfactants, organic 
acids or bioplastics remain as an emerging research topic. Recent trends 
in the research work related to wastewater treatment and bioprocess 
development for the recovery of value-added products have been 
intensively analyzed (Fig. 2). Table 1 summarizes the key topics pre-
sented in the related literature reviews that were published in the past 

two years. However, many of the presented reviews focus on one topic 
(for example, only on the microalgae application in wastewater man-
agement; strategies to obtain biohydrogen or biomethane; strategies to 
produce bioenergy, etc.). Meanwhile, the present review provides: a) a 
comprehensive and detailed summary of bioprocesses leading to 
simultaneous different wastewater bioremediation; b) production of 
bioenergy as well as industrially relevant, value-added compounds such 
as organic acids, some pharmaceuticals, biosurfactants, biopesticides 
and bioplastics. Better understanding and improvement of bioprocesses 
leading to different wastewater bioremediation and synthesis of bio-
energy and valuable compounds could lead to the development of 
advanced bio-circular economy processes working at a large scale and 
leading towards sustainable development of the world. 

2. Process developments in bioenergy production from 
wastewater 

2.1. Bioelectricity 

Bioelectricity is a renewable and sustainable form of electricity 
produced from biomass waste or wastewater coupled with biological 
activity of microorganism. One of the promising technologies to produce 
bioelectricity from wastewater is Microbial Fuel Cells (MFCs). The 

Abbreviations 

AD – Anaerobic digestion 
COD – Chemical oxygen demand 
CW – Coffee wastewater 
DCMFC – Dual chamber microbial fuel cell 
DSW – Distillery spent wash 
DW – Domestic wastewater 
DWT – Domestic wastewater treatment 
FAME – Fatty acid methyl ester 
FFAs – Free fatty acids 
HY – Hydrogen yield 
HPR – Hydrogen production rate 
HRT – Hydraulic retention time 
MFCs – Microbial fuel cells 
MWW – Municipal wastewater 

OLR – Organic loading rate 
OMW – Oil mill wastewater 
Pdmax – Power density 
PEM – Proton exchange membrane 
PHA – Polyhydroxyalkanoate 
POME – Palm oil mill effluent 
PS – Primary sludge 
SCMFC – Single chamber microbial fuel cell 
SWW – Sewage wastewater 
SwWW – Swine wastewater 
VS – Volatile solids 
WAS – Waste activated sludge 
WCO – Waste cooking oil 
VFAs – Volatile fatty acids 
WW – Wastewater 
WWTP – Wastewater treatment plants  

Fig. 1. Integrated bio-refinery strategies involved in multistage recovery of value-added products from wastewater treatment process.  
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process involves simultaneous metabolizing the organic material and 
converting the chemical energy stored in this substrate into electricity, 
using microbial metabolic activities as biocatalysts (Aiyer, 2020; Do 
et al., 2018; Wang et al., 2020). In general, MFC is made up of three 
important modules: the anode, the cathode and a proton exchange 
membrane (PEM) separating them (Fig. 3). The anaerobic microorgan-
isms present in the anodic compartment efficiently degrade the organic 
materials into electrons and protons with CO2 as an end product. The 
electrons are moved from the anode towards the cathode via an electric 
circuit. Thus, the current and positively charged protons generated can 
move to maintain electric neutrality. Besides the electricity generation, 
MFC technology could be actively involved in the conversion of organic 
materials from wastewater resulting in wastewater treatment not 
requiring separation and purification (Gul et al., 2021; Mathuriya and 
Sharma, 2009; Mathuriya, 2014; Munoz-Cupa et al., 2021; Obileke 
et al., 2021). It can be used to treat diverse types of wastewaters with no 
pretreatment, generation of less sludge, insensitivity to external stimuli 
in addition to being energy saving (He et al., 2017; Kondaveeti et al., 
2019). Many researchers (Choudhary et al., 2020; Feng et al., 2014; 
Herrero-Hernandez et al., 2013; Jayashree et al., 2016; Lai et al., 2018; 
Liang et al., 2018; Mansoorian et al., 2016; Xiao et al., 2017; Yazdi et al., 
2015) have explored the treatment and simultaneous power generation 
from treating wastewaters using MFC (Table S1). 

The technical innovations to design effective MFC are reported in 
several studies. Mahdi Mardanpour et al. (2012) utilized a novel annular 
single-chamber MFC (ASMFC) with spiral stainless steel mesh anode 
which produced significantly higher power density (20.2 Wm-3) from 
dairy wastewater than it was reported in the earlier studies. Besides, the 
power generation, this novel ASMFC achieved higher COD removal 
(91%) from the dairy industry wastewater. Jiang et al. (2013) developed 
a membrane-less MFC coupled photobioreactor for domestic wastewater 
treatment (DWT) and production of electricity along with microalgal 
biomass production. The developed system could generate power den-
sity (Pdmax) of 481 mWm− 3 (maximum) and was involved in the efficient 

removal of chemical oxygen demand (COD) (77.9%), phosphorus 
(23.5%) and nitrogen (97.6%) from DW. Further, the electricity gener-
ation from DW was improved by using wastewater from olive oil mill 
wastewater (OMW) along with DW. The mixture of DW with OMW (14:1 
ratio w/w) improved Pdmax of 124.6 mWm− 2 and significantly reduced 
the total oxygen demand by up to 65%. Ahn et al. (2014) evaluated the 
efficiency of Multi-anode MFCs – separator electrode assembly (SEA) 
and closely spaced electrodes (SPA) for generation of electricity and DW 
treatment. SEA-MFC was able to generate Pdmax of 328 ± 11 mWm− 2 

Fig. 2. The contributions at various periods starting from 2000 to 2021 related 
to wastewater management (a) and publications describing the various value 
added products recovery combined with wastewater treatment (b). 

Table 1 
Summary of key topics of the published literature surveys in the past two years 
related to the present review.  

Key topic of review References 

Bioelectricity and biofuels production from wastewater 
Summary of technologies for the conversion of waste 

organic matters into sustainable bioenergy; 
characterization of waste organic matters from different 
sources. 

Srivastava et al. (2020) 

Wastewater sources, microalgae cultivation methods and 
microalgae application for resource recovery from 
wastewater and added-value compounds production. 

Bhatia et al. (2021) 

Design variability of MFCs; factors affecting the 
effectiveness of MFCs; application of MFCs; challenges 
of MFCs. 

Gul et al. (2021) 

Wastewater treatment strategies, microalgae cultivation 
and application for wastewater treatment; resource 
recovery from wastewater and bioenergy. 

Mehariya et al. (2021) 

MFC design/model, types of wastewater and their use in 
MFC; the role of microorganisms; electricity generation. 

Munoz-Cupa et al. 
(2021) 

MFC reactions, possible substrates for microorganisms, 
factors affecting the performances of MFCs. 

Obileke et al. (2021) 

Application of microbial electrochemical technologies for 
the treatment of petrochemical wastewater; role of 
different operating parameters on the performance of 
microbial electrochemical technologies. 

Priyadarshini et al. 
(2021) 

Cyanobacteria in the conversion of wastewater to biofuels. Sadvakasova et al. 
(2021) 

Biohydrogen production from wastewater 
Summary of the modern developments and enhancement 

strategies for improving the biorefinery route of 
industrial wastewater to biohydrogen. 

Banu et al. (2020) 

Biohydrogen production from waste, challenges, 
production and improvement strategies. 

Chandrasekhar et al. 
(2020) 

Biohydrogen production strategies; factors affecting 
biohydrogen production, microorganisms involved in 
biohydrogen production, challenges of biohydrogen 
production. 

Mona et al. (2020) 

Hydrogen production strategies and technological level; 
advantages and disadvantages of different hydrogen/ 
biohydrogen production strategies. 

Aydin et al. (2021) 

Hydrogen production by dark-fermentation: 
microorganisms and they metabolism and biocatalysts 
involved in biohydrogen production; strategies to 
improve production of biohydrogen. 

Dahiya et al. (2021) 

Bio-based management of different wastewater and value-added compounds production 
Production of PHA by cyanobacteria grown in wastewater. Arias and Uggetti 

(2020) 
Microalgae cultivation strategies, wastewater treatment 

and bioremediation by using microalgae. 
Nagarajan et al. (2020) 

Microalgae for bio-products production in circular 
economy context. 

Catone et al. (2021) 

PHA production from waste. Khatami et al. (2021) 
Mechanisms of microalgae on removing micropollutants 

from wastewater. 
Liu et al. (2021a) 

Pollution prevention and waste management by using 
algal-based wastewater treatment technologies. 

Leong et al. (2021a) 

Different waste and wastewater biorefinery towards a 
sustainable circular bioeconomy. 

Leong et al. (2021b) 

Swine wastewater management using different microalgae 
species. 

L’opez-Pacheco et al. 
(2021) 

Distillery wastewater management and added-value 
compounds production. 

Ratna et al. (2021) 

Microalgae cultivation in wastewaters and resource 
recovery. 

Ummalyma et al. 
(2021)  
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which was 16% higher than SPA-MFC (282 ± 29 mWm− 2). Compared to 
SPA-MFC, SEA-MFC mediated DW treatment aided in 94% of COD 
removal and considerable decrease in the substrate diffusion. Later 
Nayak and Ghosh (2018) developed an H-type MFC to treat the mixture 
of distillery spent wash (DSW) diluted with sewage wastewater (SWW) 
in an anaerobic environment for power generation. At 50:50 ratio of 
DSW and SWW, the maximum power density of 836.81 mWm− 2 was 
attained along with 39.66% removal of total dissolved solids and 97% of 
total suspended solids. Firdous et al. (2018) investigated the electricity 
generation of vegetable oil industry wastewater using two-chambered 
MFC. The efficiency of power generation was enhanced with increase 
in time and temperature. The maximum voltage of 5839 mV was ob-
tained at 35 ◦C with COD removal of 90% (Firdous et al., 2018). Gao 
et al. (2020) presented a novel trickling MFCs for electricity generation 
using a brewery waste stream as carbon source. An average power 
density of 0.27 W/m− 2 was generated with ~60% COD removal at hy-
draulic retention time (HRT) of 1.6 h. Mohamed et al. (2020) presented 
MFC based on two photosynthetic microorganisms Synechococcus sp. 
And Chlorococcum sp. As biocatholyte for bioelectricity generation, CO2 
sequestration and biomass production using kitchen wastewater. Syn-
echococcus sp.-based MFC was also tested by Ratna e al. (2021) and 
power density of 41.5 ± 1.2 mW/m2 was observed. Wu et al. (2020) 
presented a novel combined dual MFC system for the continuous 
removal of Victoria Blue R (VBR) and electricity generation from textile 
wastewater using anaerobic and aerobic VBR-degrading bacteria, She-
wanella putrefaciens and Acinetobacter calcoaceticus. The VBR removal 
efficiency was 98.7%. Moreover, the decreased toxicity of the effluent 
was also detected. Subsequently, the use of waste substrate present in 
wastewater for electricity generation and simultaneously microbial 
growth will help to eradicate the harmful toxic compounds turning them 
into non-toxic counterparts. Moreover, the management of wood-based 
panel industry wastewater through MFCs was suggested by Toczy-
łowska-Maminska (2020). Overall, these studies indicated that MFCs 
technology is favorable strategy to simultaneously reduce BOD and COD 
values in wastewater and recover bioelectricity. However, more 
emphasis should be given to improve the efficiency of MFC electrodes 
and to provide controlled physio-chemical conditions for the growth of 
microbes during large scale operations. 

2.2. Biohydrogen 

Among the different gaseous biofuels, biohydrogen possesses higher 
energy density (141.9 MJ kg− 1) and it yields only water as a combustible 
by-product. Hence, it is considered the “clean biofuel”, which is also 
easy to be stored and transported (Shanmugam et al., 2020). Currently, 
most of the hydrogen production depends on non-renewable fossil--
fuel-based resources, which simultaneously release harmful greenhouse 
gases (GHGs) (Lee et al., 2019a). Hence, considerable attention is 
directed towards the production of hydrogen from renewable feed-
stocks, which has several advantages such as, reduction/elimination of 
GHG production, and utilization of cheap renewable materials which 
eventually improve the economy of production (Dahiya et al., 2021; 
Hosseini and Wahid, 2016). Biologically mediated hydrogen production 
is broadly classified into light-mediated and light-independent re-
actions. Biological hydrogen production involves biophotolysis, photo-
fermentation, dark fermentation and microbial electrolysis (Phan et al., 
2020; Rupprecht et al., 2006). An overview of the metabolic reactions 
involved in the biohydrogen production along with the reported Gibbs 
free energy is presented in Table 2. Among all, dark fermentation was 
found to be a cost-effective and high-yield method due to its potential for 
the utilization of diverse feedstocks, minimal energy requirements and 
industrial applicability (Chong et al., 2009). In dark fermentation, 
anaerobic and facultative anaerobic bacteria are predominantly 
involved in the utilization of complex hydrocarbons from different 
feedstocks for pyruvate biosynthesis and subsequent hydrogen produc-
tion via the acidogenic pathway of glycolysis. Further, it can produce up 
to four mols of hydrogen from one mol of glucose in a quick manner 
(Sivagurunatha et al., 2017). However, the carbohydrate source or the 
substrate is the major factor which determines the microbial production 
and yield of biohydrogen from these pathways. Hence, the selection of 
an appropriate substrate with high carbohydrate content is the vital 
parameter in biohydrogen production (Hernández-Mendoza et al., 2014; 
Kapoor et al., 2020). In recent decades, the conversion of organic 
matter-rich wastewater into value-added products gained much atten-
tion due to its great economic benefit: low cost, suitable carbohydrate 
content for microorganism’s growth and biodegradability with simul-
taneous reduction and stabilization of wastes (Kamyab et al., 2019; 
Preethi et al., 2019). Some of the sources of wastewater exploited as the 
substrates for the production of biohydrogen includes dairy (da Silva 
et al., 2019), cassava (Amorim et al., 2014), brewery (Pachiega et al., 
2019), palm oil mill effluent (POME) (Taifor et al., 2017), pulp and 
paper mill (Vaez et al., 2017), pharmaceuticals (Sivaramakrishna et al., 
2009) and textile (Li et al., 2012) industry, which are summarized in 
Table 3 and the major findings are described below. 

Sivagurunathan and Lin (2016) demonstrated the feasibility to use 
brewery wastewater as a substrate and enriched microbiota in contin-
uous stirred tank reactor, resulting in peak hydrogen production rate 
(HPR) of 37.5 L H2 L− 1 with the maximum yield (HY) of 1.62 mol H2 
mol− 1 hexose at 6 h HRT. They also determined that the substrate 
concentration at the organic loading rate (OLR) 16.6 g L− 1 in brewery 
wastewater has a huge impact on hydrogen production (Sivagurunathan 
and Lin, 2020). Murugan et al. (2020) utilized rice mill wastewater, food 
wastewater and sugar wastewater for both the production of bio-
hydrogen and COD removal, among which, food wastewater has shown 
highest cumulative HY of 1.8 mol H2 mol− 1 glucose with concomitant 
79.9% COD removal. Vaez et al. (2017) investigated the efficacy of 
paper mill effluent as an organic feedstock for biohydrogen production 
through dark fermentation and the highest HY of 55.4 mL g− 1 COD was 
obtained along with 569 mL g− 1 COD of methane from the substrate 
concentration of 5 g COD L− 1. The exploitation of activated carbon and 
cation exchange resin-pretreated textile industry wastewater as the 
feedstock for dark fermentation was also evaluated by Li et al. (2012). 
The pretreated-feedstock devoid of bio-toxic inhibitors, with total sugar 
concentration of 20 g L− 1 produced a higher HY of 1.37 mol H2 mol− 1 

reducing sugars. Further, Lin et al. (2017) utilized coagulation 

Fig. 3. Microbial fuel cells (MFCs). The MFC is made up of three important 
modules: the anodic, the cathodic compartments are separated by a proton 
exchange membrane (PEM). 
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pretreated-textile desizing water as substrate yielding HY of 1.52 mol 
mol− 1 hexose and the HPR of 3.9 L L-d. Coagulation pretreatment aided 
in both removals of toxic compounds and increased hydrogen produc-
tion ability up to 120%. It has been reported that OLR influenced bio-
hydrogen production. The reduced OLR by using dairy industry effluents 
resulted in increase biohydrogen (da Silva et al., 2019). Also, the use of 
ferrous ions as enhancers (100 mg L− 1) improved the biohydrogen 
production with an HPR of 5.729 mL L− 1h− 1 in 24 HRT (Paul et al., 
2014). The effect of HRT and solid retention time (SRT) on biohydrogen 
production using POME as substrate was examined using anaerobic 
sequencing batch reactor (ASBR) and Thermoanaerobacterium spp. 
(Maaroff et al., 2018). It was reported that Thermoanaerobacterium spp. 
Produced hydrogen with HPR of 8.54 mmol H2 L− 1h− 1 as a dominant 
species involved in biohydrogen production. The solubilized CO2 pre-
sent in the wastewater can also be reduced to carbonates using recently 
reported strains of Corynebacterium flavescens (Sharma and Kumar 2020, 
2021). It can be summarized that biohydrogen production can be 
strongly associated with management of different wastewaters, but the 
process control, optimization and improvement of technical issues 
(reliability, durability, etc.) remain as a main challenge for the research 
and industrial sectors. Biohydrogen production combined with waste-
water management on the industrial scale is still in a stage of 
development. 

2.3. Biomethane 

Europe’s population is projected to grow by 1.7% between year 2016 
and 2080, indicating an increase of 8.5 million people and thus a rise in 
wastewater generation (Colzi Lopes et al., 2018; Commission European, 

2017). Wastewater management is an essential part of environmental 
protection and good public health preservation for a country (Chua 
et al., 2013; Kamyab et al., 2017a, b; Roudia et al., 2020). The growth of 
human population promotes the consumption of fossil fuels and global 
warming. The latter requires great attention and development of 
renewable and environment friendly alternative fuels and energy sour-
ces (Phowan and Danvirutai, 2014). Regarding environmental protec-
tion, production of biomethane and biohydrogen are among the most 
favorable solutions over the fossil fuels or the existing physical-chemical 
methods of methane synthesis (Arizzi et al., 2016). The combination of 
wastewater management with production of gaseous fuels, electricity 
and especially hydrogen (H2) and methane (CH4) is an advanced solu-
tion to reduce both demand of fossil fuels and wastewater amount. The 
biomethane production and wastewater management include several 
debatable aspects: a) the generation of biogas from microalgae culti-
vated in wastewater; and b) the conversion of sewage sludge from 
wastewater treatment plants (WWTP) into biomethane. The use of 
different wastewater sources for microalgae grown to further produce 
biomethane has been already discussed in detail (Bohutskyi et al., 2018; 
Chen et al., 2015; Craggs et al., 2012; Hidaka et al., 2014; Kinnunen and 
Rintala, 2016; Morales-Amaral et al., 2015; Passos et al., 2013; Polish-
chuk et al., 2015; Prajapati et al., 2013; Quiroz Arita et al., 2015). Due to 
the ability of microalgae to assimilate nutrients and eliminate it from the 
wastewater, microalgae cultivation technologies for wastewater treat-
ment holds promise as an alternative to the traditional wastewater 
management (Bohutskyi et al., 2015, 2016, 2019, 2016; Catone et al., 
2021; Kamyab et al., 2017a; Park et al., 2011; Passos et al., 2013). The 
use of wastewaters for biomass production can help minimize fresh-
water demand; carbon, nutrients cost; improve phosphorus and nitrogen 

Table 2 
Overview of the metabolic reactions involved in the production of bioenergy and other bio-compounds. NA: Not reported; scl – short acyl chain length compounds; mcl 
– medium acyl chain length compounds.  

Bioenergy and 
value-added 
compounds 

Process Metabolic reactions Gibbs free energy 
(ΔGo) (kJ mol− 1) 

Reference 

Biohydrogen Biophotolysis 
Direct biophotolysis H2O + Light energy→H2 +

1
2 

O2  
+374.5 Benemann et al. (1973) 

Indirect biophotolysis 6H2O + 6CO2 + Light energy→ C6H12O6 + 6O2 

6H2O + C6H12 O6+ Light energy→12H2 + 6CO2 

NA Benemann (1996) 

Photofermentation CH3COOH + 2H2O + Light energy→4H2 + 2CO2 NA Sarangi and Nanda 
(2020) 

Dark fermentation 4H2O + C6H12 O6 →2CH3COO− + 2HCO3
− + 4H+ + 4H2 (Acetic 

acid pathway) 
− 206.3 Thauer et al. (1977) 

2H2O + C6H12O6→2CH3CH2CH2COO− + 2H3CO3
− + 3H+ + 2H2 

(Butyric acid pathway) 
− 254.8 Gottschalk (1986) 

2HCOOH + 2NAD+→2CO2 + 2NADH + 2H+ (Enterobacterial 
pathway) 

− 209.1 Stickland (1929) 

Microbial electric cells CH3COO− + 4H2O → 2HCO3
− + H+ + 4H2 +104.6 Kadier et al. (2019) 

Biomethane H2 - interspecies electron transfer CH3CH2CH2COO− + 2H2O → 2CH3COO− + H+ + 2H2 +48.32 Zhang et al. (2018) 
4H2 + H+ + HCO3

− → CH4 + 3H2O − 135.58 
Formate - interspecies electron 
transfer 

CH3CH2CH2COO− + 2HCO3 – → 2CH3COO− + H+ + 2HCOO− +45.60 
4HCOO− + H2O + H+ → CH4 + 3HCO3

− − 111.00 
Aceticlastic methanogenesis CH3COO− + H2O → HCO3

− + CH4 31.02 
Methanogenesis (total reaction) 2CH3CH2CH2COO− + H2O + HCO3

− → 4CH3COO− + H+ + CH4 − 38.94 
Biodiesel Transesetrification RCOOR1 + R2OH ←→ R1OH + RCOOR2 +92.71–171.16 Ferrão-Gonzales et al. 

(2011); Nautiyal et al. 
(2014) 

Bioethanol Fermentation C6H12O6 → 2CH3CH2OH + CO2 +94–98 depending on 
reaction temperature 

Arshad et al. (2014) 

Biobutanol Acetone-butanol-ethanol (ABE) 
fermentation performed by C. 
acetobutylicum. 
Solventogenesis 

C6H12O6→→→→Acetyl-CoA→Acetoacetyl-CoA →3- 
hydroxybutyryl-CoA→Crotonyl-CoA→Butyryl- 
CoA→butylaldehide→ butanol 

NA Cheng et al. (2019) 

PHA production Pathway I (predominantly used 
in PHB-producing organisms) 

C6H12O6 →2 Acetyl-CoA → Acetyl-CoA →(R)-3-Hydroxybutyryl- 
CoA → scl-PHA (PHB) 

NA McAdamet al. (2020) 

Pathway II (present in mcl-PHA 
producing pseudomonads) 

Fatty acids →Acyl-CoA→ fatty acid β-oxidation reaction ((S)-3- 
hydroxyacyl-CoA + (R)-3-hydroxyacyl-CoA) → mcl-PHA 

NA Kniewel et al. (2019) 

Pathway III (present in mcl-PHA 
producing pseudomonads) 

Acetyl-CoA→ malonyl-CoA → 3-ketoacyl-ACP → fatty acid 
biosynthesis reactions ((R)-3-hydroxyacyl-ACP → (R)-3- 
hydroxyfatty acid → (R)-3-hydroxyacyl-CoA → mcl-PHA 

NA  
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removal and together produce value-added compounds. Such technol-
ogy is one of the promising applications of circular bioeconomy 
(Ummalyma et al., 2021). Moreover, it is also suggested to use waste-
water alternatively as a conventional fertilizer to cultivate algae (Chen 
et al., 2015). Despite the ability to apply wastewater for growth of 
microalgae, the maintenance of a population of a single species is still a 
challenge. However, mixed species of algae can also be used for 
wastewater utilization (Chen et al., 2015). Further, the obtained 
microalgal biomass can be supplied for anaerobic digestion to produce 
biomethane (Arashiro et al., 2020; Bohutskyi et al., 2018; Perazzoli 
et al., 2016; Shchegolkova et al., 2018; Thorin et al., 2017). Arashiro 
et al. (2020) combined wastewater treatment with microalgae cultiva-
tion for pigments (phycobiliproteins) production and biomethane gen-
eration. After microalgae cultivation, up to 52% of COD, 86% of 
NH4

+-N, and 100% of phosphorus reduction were detected. The final 
biomethane yields ranged from 159 to 199 mL CH4 g− 1 VS. The latter 
example clearly indicated beneficial relations between wastewater 
management and biomethane production corresponding to the main 
principle of a circular bioeconomy. 

The second major discussed aspect is the conversion of sewage 
sludge from WWTP into biomethane (Caballero et al., 2020; Chua et al., 
2013; Ebrahimi-Nik et al., 2018; Kaluža et al., 2014; Paolini et al., 
2018). Sewage sludge is obtained during the water cleaning process. 
Anaerobic digestion (AD) is a promising way for sewage water treatment 
that enables the generation of renewable energy from the same process 
(Caballero et al., 2020). During the AD, the bacteria break down organic 
substances with concomitant production of biogas containing CH4 and 
CO2, which in turn can be applied to produce biofuel, heat and elec-
tricity (Table 2). Anaerobic sludge treatment offers an alternative so-
lution with a various advantage such as reduction of organic content to 
~50%, and further process to produce biogas; 2) generation of renew-
able energy; 3) the possibility of independent supply of energy to the 
sewage treatment plant; 4) lowered production costs; 5) climate pro-
tection by improving the balance of CO2 emitted and waste treatment 
facilities (Makisha and Semenova, 2018). The combination of different 
wastewater management and biomethane production possibilities and 
cases were discussed in detail previously (Berktay and Nas, 2007; 
Chaiprasert et al., 2017; Chou and Su, 2019; Colzi Lopes et al., 2018; 

Table 3 
Biohydrogen production from different industrial wastewaters. WW - Wastewater; ASBR - Anaerobic sequencing batch reactor; CSTR - Continuous stirred tank reactor; 
UASBR - Upflow anaerobic sludge blanket reactor; STRD - Stirred tank reactor digester; COD - chemical oxygen demand; POME - Palm oil mill effluent; HRT - hydraulic 
retention time; VS – volatile solids;a g hexose equivalent L− 1;b g total sugar L− 1;b g total sugar L− 1;c mL L− 1 h− 1 at 24 h HRT;d mL H2 g− 1 VS (sucrose);e mmol H2 g− 1 

COD;f mmol g− 1 COD initial;g mL g− 1 COD.  

Type of industrial 
wastewater 

Reactor Inoculum Operating conditions Hydrogen Production (mol 
H2 mol− 1 carbohydrate) 

Reference(s) 

Substrate 
concentration (g COD 
L− 1) 

pH Temperature 

Dairy industry 
WW 

Batch Bacteria B1 and B4 NA* 5.0 70 ◦C 5.729c Paul et al. (2014) 
AFBR Biomass from 

fermentation 
15.44 4.3 30 ◦C 2.56 da Silva et al. (2019) 

Cassava WW Batch Clostridium 
acetobutylicum 

5.0 7.5 36 ◦C 2.41 Cappelletti et al. (2011) 

AFBR Sludge from Swine 
wastewater treatment 

5.0 4.0 28 ◦C 1.91 Amorim et al. (2014) 

Food WW Batch Acinetobacter junii-AH4 1.3 7.5 37 ◦C 1.8 Murugan et al. (2018) 
Sugar WW 4.8 7.5 37 ◦C 1.1 
Food WW Batch Klebsiella pneumoniae- 

FA2 
NA* 5.5 37 ◦C 2.85 Ramu et al. (2020) 

Potato WW CSTRs Sludge from WW 
treatment plant 

10.0 5.5 35 ◦C 320 d Salem et al. (2018) 

Beverage WW CSTR Mixed culture 20.0 6.3 37 ◦C 1.62 Sivagurunathan and Lin 
(2016) 

Batch Anaerobic granulated 
mixed consortium 

2.0 5.5 37 ◦C 1.5 Pachiega et al. (2019) 

Batch Mixed culture 20.0 5.5 37 ◦C 3.76 Sivagurunathan and Lin 
(2020) 

POME Batch Anaerobic mixed 
microflora 

NA* 5.5 35 ◦C 0.41e Mohammadi et al. 
(2011) 

Two stage 
fermentation 
reactors 

Anaerobic sludge 76.5 5.5 55 ◦C 49.22e Krishnan et al. (2016) 

Batch Engineered E. coli 
BW25113 

5.4 6.5 37 ◦C 0.66 Taifor et al. (2017) 

Two stage 
fermentation 
reactors 

Mixed culture 20.0a 6.5 55 ◦C 2.99 Maaroff et al. (2018) 

Paper mill WW UASBR Mixed culture 2.3 5.0 35 ◦C 5.29f Farghaly et al. (2015) 
Pulp and paper 

mill WW 
Batch Anaerobic sludge 5 5.0 37 ◦C 55.4 g Vaez et al. (2017) 

Probiotic WW Batch Sludge from slaughter 
house 

5.0 b 5.5 37 ◦C 1.8 Sivaramakrishna et al. 
(2009) 

Rice mill WW Batch Enterobacter aerogenes 10.2 b 7.0 33 ◦C 1.74 Ramprakash and 
Muthukumar (2014)  

Glass reactor Enterobacter aerogenes 
RM08 

NA* 7.0 33 ◦C 1.92 Ramprakash and 
Muthukumar (2016)  

Batch Acinetobacter junii-AH4 2.6 7.5 37 ◦C 1.4 Murugan et al. (2018) 
Textile WW Batch Clostridium butyricum, 

Klebsiella oxytoca 
20.0 7.0 37 ◦C 1.37 Li et al. (2012) 

Textile desizing 
WW 

STRD Granular sludge 15 b 6.8 35 ◦C 1.52 Lin et al. (2017)  
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Kiselev et al., 2019; Michailos et al., 2020; Papadias et al., 2012; Yun 
et al., 2016). Recent reports suggested CH4 production from four times 
diluted piggery wastewater by using purple phototrophic bacteria and 
algal-bacterial consortia. CH4 concentrations of 90.8% were obtained 
(Marín et al., 2019). The use of purple phototrophic bacteria and con-
sortium of algae and bacteria supported the CH4 concentration up to 
93.3 and 73.6%, respectively. Digestion of the shrimp processing 
wastewater yielded high levels of methane in the biogas at over 70% 
(v/v) (Zappi et al., 2019). Petrochemical wastewater (Tan et al., 2020), 
recycled pulp and paper wastewater (Bakraoui et al., 2019), shrimp 
processing (Zappi et al., 2019), and saline fish wastewaters (Lete-
lier-Gordo et al., 2020) have also gained attention to be applied in 
biomethane production. It was presented that countries such Australia, 
Denmark, France, Germany, USA, etc. Successfully combined waste-
water treatment with biogas production (Nguyen et al., 2021). Polish 
researchers presented good perspectives of circular bioeconomy by 
combining biogas production and wastewater treatment (Kaszycki et al., 
2021). Nevertheless, the development of a most suitable and effective 
system for biogas production with much higher CH4 content and 
wastewater detoxification remains the subject of investigation. 

2.4. Biofuels 

In 2019, world liquid fuel consumption reached ~100 million barrels 
per day and is predicted to grow (Hacquard et al., 2019). Increasing the 
consumption of liquid fuels reduces fossil fuel reserves and acts as a 
driving force to look for alternatives. One of such alternatives is biofuel 
which usually refers to nowadays industrially important liquid fuels 
such as bioalcohols and biodiesel that can be used as a replacement for 
conventional transportation fuels (Ganesan et al., 2020). Different types 
of wastewater treatment coupled with simultaneous biofuel and pro-
duction of other bio-products using microorganisms such as microalgae, 
cyanobacteria, bacteria, yeast and fungi and achievement of their suc-
cessful exploitation in large-scale plants have been extensively studied 
(de Souza Candeo et al., 2020; Unc et al., 2017). The most explored 
microorganisms for the simultaneous wastewater and/or sewage sludge 
treatment and biofuel production are microalgae. Due to their good 
ability to grow in different types of wastewaters utilizing nutrients and 
accumulating lipids, Chlorella sp. Such as C. vulgaris, C. minutissima, C. 
sorokiniana, and Scenedesmus sp. Are widely explored, and commonly 
used as well (Abu Jayyab and Al-Zuhair, 2020; Ryu et al., 2014). Also, by 
growing microalgal biomass in different wastewaters or properly pre-
treated (by anaerobic fermentation or pyrolysis) sewage sludge as an 
alternative growth media is a promising and ecologically conscious so-
lution to overcome wastewater treatment issues and obtain green energy 
for biofuel production from specific biomolecules (mostly carbohydrates 
and triacylglycerols) (El-Dalatony et al., 2019; Kadir et al., 2018). Cells 
of microalgae growing and assimilating different organic and inorganic 
wastes present in wastewater accumulate carbohydrates, lipids (as an 
energy reserve mostly in the stationary phase of the growth) and other 
molecules such as proteins which can be used for the production of 
biofuels as follows: carbohydrates for the production of bio-alcohols 
such as bioethanol, biobuthanol, biogas, biohydrogen, etc. And oil 
droplets or lipids, most notably C14-18 triacylglycerols (TAGs), - for 
biodiesel production (Hawrot-Paw et al., 2019; Muller et al., 2014). 
Microalgae that accumulate proteins in their cells are underexplored. 
Nevertheless, proteins as by-products from different sources could be 
used for biofuel and other value-added products production. It could be 
done through hydrolyzing proteins to amino acids which in turn can be 
enzymatically biotransformed by engineered microbes to keto acids 
which in turn can be converted to fuels (ethanol, 1-propanol, etc.) and 
even pharmaceutical molecule precursors (Huo et al., 2011). However, 
currently, protein utilization as a source for biofuel production is in the 
early stage of its development (Li et al., 2018; Santos et al., 2020). 
Carbohydrates-derived biofuel production is obtained via fermentation, 
and lipid-derived biodiesel is usually made through transesterification 

reactions resulting in the formation of fatty acid alkyl esters (biodiesel) 
(Table 2). Transesterification is preferred to be catalyzed by enzymes, in 
particular microbial lipases are under great demand for the process, 
making the technology even more sustainable and ecologically friendly 
(Sharma et al., 2019). The relations between wastewater management 
and third/fourth generation biofuel production utilizing microalgae and 
other microorganisms are presented in Fig. 4. 

Bioalcohols (bioethanol and biobutanol) and biodiesel production 
using microalgae biomass gained tremendous attention in the recent 
years and has already been comprehensively discussed in previous 
studies (Ambat et al., 2016; Ganesan et al., 2020; Mata et al., 2010). The 
circular bioeconomy-based strategy by combining wastewater treatment 
and microalgae cultivation can be successfully applied to produce third 
or fourth generation biofuel (Bošnjakovic and Sinaga, 2020; Ganesan 
et al., 2020; Jeong and Jang, 2020). The latter is produced employing 
genetically modified microorganisms. Third and fourth generation bio-
diesel that is produced using different microorganisms has many ad-
vantages over first and second generations biodiesel (Cea et al., 2015; 
Raimondi et al., 2014). In the case of microalgae that are most 
commonly used for the production of biofuels, their advantages as a 
feedstock include quick growth and easy cultivation not requiring 
agricultural lands, production of biodegradable and non-toxic materials 
during growth, CO2 sequestration or greenhouse gas fixation and of 
course wastewater treatment and resources recovery: N recovery, P re-
covery, heavy metals recovery, etc. (Alaswad et al., 2015; Peter et al., 
2021; Sharma et al., 2018). The main disadvantages of first- and 
second-generation biodiesel are very high raw material costs, sometimes 
constituting ~80% of the total biofuel production cost (Singh et al., 
2011) and notably low effect of diminishing greenhouse gas emissions. 
Nevertheless, efficient generation of biofuels exploiting microalgae 
often encounters issues related to major developmental challenges. The 
latter are usually associated with costs of supply that need to be reduced 
by ten times to gain its competitiveness (at least in the US) and 
scaling-up. Some genetically engineered and biotechnologically tailored 
microalgae strains that are able to maintain suitable growth rate in 
usually stressful wastewater conditions and accumulate high lipid yields 
can be a promising solution to lower the production costs. Such engi-
neered strains can help to remarkably improve the technology in the 
future (Bhatt et al., 2014; Sadatshojaei et al., 2020 Sharma et al., 2018). 
Different microalgae cultivation systems that could result in the 
obtainment of high yield of microalgae biomass and recover feed 
resource from wastewater are now under development. Some of the 
preferable and mainly discussed strategies are high-rate algal ponds, 
algal turf scrubber (ATS), open and closed photobioreactor and hybrid 
systems. The pollution prevention and resource recovering by 
algal-based wastewater treatment technologies has been in detail dis-
cussed by Bhatia et al. (2021), de Assis et al. (2020), Leong et al. 
(2021a), L’opez-Pacheco et al. (2021), Mehariya et al. (2021). For the 
successful realization of microalgae for the simultaneous wastewater 
treatment and biofuel production, it is important to identify the major 
genetic processes that have shaped their genomes and what impact these 
processes had on their phenotypes, however, it is a challenging task 
since both are linked and highly plastic (Brodie et al., 2017). Significant 
third and fourth generation biofuel production improvements should be 
also made not only in cultivation, but also in harvesting, drying, 
extraction, conversion and other stages of the microalgal biofuel pro-
duction in large-scale for them to become economically feasible and 
advantageous (Chu et al., 2021; Georgianna and Mayfield, 2012; Javed 
et al., 2019; Larkum et al., 2012; Sadatshojaei et al., 2020). 

The most recent studies of coupling wastewater treatment and bio-
fuel production that have been conducted in the past two to three years 
for the technology implementation were largely associated with appli-
cation of Chlorella sp. Studies have shown that Chlorella sp. Are capable 
of successfully generating biomass rich in biological macromolecules 
suitable for green energy production from wastewaters of kitchen, 
sewage, aquaculture, brewery, tannery, sugar-cane industry and even 
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pharmaceutical (Amenorfenyo et al., 2019; Hawrot-Paw et al., 2019; 
Kumar et al., 2019a; Nagi et al., 2020; Nayak and Ghosh, 2020; Zewdie 
et al., 2020). Abu Jayyab and Al-Zuhair (2020) evaluated the usability of 
microalgae for the removal of phenolic compounds from wastewater and 
as a sustainable oil source for biodiesel production. Wastewater 
pre-treatment such as physical pretreatment (centrifugation, filtration, 
etc.) removing solid rough materials, dilution, autoclavation, 
UV-radiation, etc. Done prior microalgal cultivation is a common 
practice diminishing stressful conditions, promoting better algae growth 
and generation of biomass that will be converted into biofuel (Ame-
norfenyo et al., 2019; Salama et al., 2017). Some studies have also 
identified that biological pretreatment using active sludge or waste-
water with indigenous bacteria might be as well cost-efficient and 
favorable for algal growth and wastewater nutrient removal/conversion 
(Lee et al., 2019b; Zahmatkesh and Pirouzi, 2020). Ryu et al. (2014) 
studied C. vulgaris for the bioremediation of municipal wastewater 
(MWW) and joint biofuel production. Study confirmed that the most 
active growth of the C. vulgaris took place in untreated wastewater 
compared to its growth in filtered and sterilized wastewaters. Toyama 
et al. (2018) experimentally determined that Chlamydomonas reinhardtii, 
C. vulgaris and Euglena gracilis grew better in two MWW and one swine 
wastewater (SwWW) effluent with indigenous bacteria than without it. 
Biomass of the studied microalgae increased in the range of 1.5- to 
2.8-fold depending on the species of microalgae. However, certain 
bacterial species my cause lysis of microalgae or inhibition of their 
growth (Covarrubias et al., 2012; Toyama et al., 2018), therefore, the 
exploration of what bacteria promote the growth of different microalgae 
species should be done (Wirth et al., 2020). 

It was also demonstrated that some oleaginous yeast can be suc-
cessfully employed to produce biofuels growing in livestock wastewaters 
(Chung et al., 2016), sewage, domestic, household, industrial (Kanak-
dande et al., 2019) and sago processing wastewater with Candida tro-
picalis being used mostly (Thangavelu et al., 2020). Furthermore, some 
indigenous wastewater bacteria have been also shown to be able to 
accumulate lipids in wastewater treatment plants. A few of the repre-
sentative microorganisms notable in biological wastewater treatment 
plants (BWWT) are bacteria Microthrix parvicella (long-chain fatty acid 
accumulating organism) and Accumulibacter phosphatis (poly-
hydroxyalkanoate (PHA) accumulating organism) (Muller et al., 2014). 
However, studies regarding yeast and bacteria utilization for wastewater 
treatment and biodiesel production are scarcer than those involving the 
use of microalgae. Simultaneous microalgae-bacteria or 
microalgae-yeast cultivation in wastewater coupled with biofuel pro-
duction is being studied as well, giving some promising results regarding 
the promotion and improvement of cost-efficiency (the main challenge) 
of the technology (Gomez et al., 2016; Liu et al., 2018; Rakesh and 
Karthikeyan, 2019). 

Another important point related to wastewater management and 
biofuel production is employment of sewage sludge. Industrial and 

MWW treatment generates the sewage sludge, which is estimated to 
make up ~1–2% of the total volume of treated wastewater (Cea et al., 
2015; Godoy et al., 2018). It was indicated that converting wastewater 
sludge to lipid is considered as one of the best strategies of sludge 
management (Chen et al., 2020; Liu et al., 2021b; Yi et al., 2018). It has 
been reported that primary sludge (PS) and waste activated sludge 
(WAS), has many advantages as a biodiesel feedstock. The main benefits 
of PS and WAS are low cost and abundantly rich in lipid content (Choi 
et al., 2019). Melero et al. (2015) suggested that PS and WAS can contain 
5–36% and 2–20% free fatty acids (FFAs), respectively, which further 
can be used for biodiesel and other fatty acid esters production. The 
sewage sludge containing fatty substances – biodiesel precursors, can be 
converted into this biofuel via transesterification reactions (Kumar et al., 
2020; Sandoval et al., 2017). Transesterification reactions are catalyzed 
by chemical (acid- and/or base-catalyzed) or, as it was already 
mentioned, more sustainable and eco-logically friendly catalysts – en-
zymes, such as lipases and esterases (Table 2). Mondala et al. (2009) 
generated FAMEs (fatty acid methyl esters) from PS and secondary 
sludge via chemical transesterification reaction. Authors of the study 
estimated yield of 10% FAMEs per dry weight of used sludge and esti-
mated production cost of $3.23 per gallon that is lower than usual 
petroleum-based diesel. Such studies demonstrate that exploitation of 
oleaginous biomass feedstock could be an important source of 
wastewater-derived alternative fuel. Understanding different charac-
teristics of a biodiesel feedstock is important for the development and 
optimization of the technology and achievement of commercial feasi-
bility. Despite the fact that determinations of the best method of 
collection and treatment of different sewage sludge fractions to achieve 
the highest lipid extraction yield are challenging, biodiesel generation 
from wastewater can become an important source of renewable energy 
in the future. 

Another rather new method of sewage disposal is production of bio- 
oil by pyrolysis. The resulting liquid has a high-heating value and po-
tential for electricity generation. However, this process has only been 
moderately successful since the complexity of bio-oil complicates the 
chemical processes needed to refine it (Arazo et al., 2017a, 2017b, 
2017b; Dufreche et al., 2007; Supaporn et al., 2018). Thus, different 
wastewaters can be useful as a feedstock for biofuel and bioenergy 
production while reducing wastewater contamination load and making 
it a sustainable, environmentally friendly approach but not always a 
cheaper mean of biofuel production. 

3. Resource recovery from wastewater to produce value-added 
biomolecules 

The bioenergy production by combining different wastewater man-
agement and resource recovery gained huge attention. The wastewater 
can be attractive feedstock for cultivation bacteria, microalgae, and 
yeast to produce organic acids, bioplastics, biosurfactants or 

Fig. 4. Wastewater management and microalgae exploitation for industrial prosperity.  
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pharmaceutical biomolecules. Nevertheless, the suitable wastewater 
composition, low toxicity, and technical solutions to combine waste-
water treatment with production of value-added compounds in cascade 
reactions in large industrial scale remains a challenge. 

3.1. Biosurfactants 

The most promising sector where production of high value com-
pounds is combined with detoxification and utilization of different 
wastewater is production of biosurfactants. Biosurfactants are naturally 
occurring molecules that have hydrophilic and hydrophobic chemical 
moieties. This characteristic enables these molecules to reduce the sur-
face tension and form micelles (Yanez-Ocampo et al., 2017). Surfactants 
are part of the most versatile group of chemicals potentially used in 
paints, detergents, pharmaceuticals, paper products, cosmetics, petro-
leum, food, and water recycling (Akbari et al., 2018). Due to their di-
versity, biosurfactants are considered as a potential candidate for the 
environmental cleanup of pollutants (Vijayakumar and Saravanan, 
2015). Moreover, biosurfactants are characterized by better biode-
gradability, environmental compatibility, and lower toxicity than 
chemical compounds used for the same purpose (Pi et al., 2017). 
Biosurfactant-producing microorganisms are capable of facilitating the 
biodegradation of polycyclic aromatic hydrocarbons (PAHs) known as 
toxic pollutants (Sun et al., 2019). Addition of 0.2%–0.6% (w/w) of 
biosurfactants makes the PAH removal two-times more efficient (Bezza 
and Chirwa, 2017). These characteristics have been increasingly 
attracting the attention of the scientific and industrial community on the 
biosurfactants (Banat et al., 2010) and their cheaper and easier pro-
duction. Several benefits of combining use of wastewater for bio-
surfactants production were suggested: 1) the hazardous pollutant 
becomes the medium; 2) new beneficial industrial products are made; 3) 
the pollutant is turned less toxic or hazardous (Veena-Kumara-Adi and 
Savitri, 2019). The choice of a suitable low-cost raw material can 

account for 10–30% of the overall cost (Nitschke et al., 2005). The major 
problem is to find a waste with adequate carbohydrate and lipid 
composition to support the optimal growth of microorganisms and 
maximum production of biosurfactants (Makkar and Cameotra, 1999). 
The application of different agro-culture and oil processing wastes as 
cheaper/renewable substrates for biosurfactants production has been 
discussed previously (Banat et al., 2014; Makkar and Cameotra, 2002; 
Pele et al., 2019; Santos et al., 2016; Sekhon et al., 2012; Vandana and 
Singh, 2018), but application of wastewater as nutrient source for pro-
duction of microbial biosurfactants has not been clearly summarized. 
The low-cost feed stocks as substrate for biosurfactant production has 
been already used by Nitschke and Pastore (2006). Surfactant produced 
by Bacillus subtilis LB5a which was cultivated on cassava wastewater as a 
substrate resulted in the formation of stable emulsions with different 
hydrocarbons. Achieved concentration of surfactant in 48 h reached 3.0 
g L− 1. The most popular industrial wastewater source is cooking 
wastewater (Waste Cooking Oil (WCO)) (Table 4). The main advantages 
of cooking wastewater as most preferable feedstock are high levels of 
hydrophobic organics (oil, quinoline, pyridine) providing the needed 
environment for successful growth of biosurfactant-producing micro-
organisms (Zhang et al., 2012). The use of WCO as a raw material 
resulted in 3.7 g L− 1 (Yanez-Ocampo et al., 2017) and 5.2 g L− 1 (Rocha e 
Silva et al., 2013) yields of suitable biosurfactants. The similar yield of 
biosurfactant (4.9 g L-1) was detected using Pseudomonas aeruginosa and 
sunflower oil refining wastes as carbon source (Benincasa and Accorsin, 
2008). Colak and Kahraman (2013) reached 9.6 and 13.3 g L− 1 pro-
duction of rhamnolipid in 72 h using P. aeruginosa and its recombinant 
strain, respectively. The second most promising feedstock for cultivation 
of biosurfactant-producing microorganisms is the wastewater obtained 
after depulping and demucilage of coffee fruits (known as coffee 
wastewater (CW)). CW is rich in proteins, carbohydrates (mannose, 
galactose, glucose, arabinose) and minerals (potassium, phosphorus, 
magnesium, calcium, iron, etc.) (Bonilla et al., 2014; Murthy and Naidu, 

Table 4 
Wastewater as raw material for biosurfactants production. ND – data not showed.  

Biosurfactants – producing 
microorganism 

Wastewater use as the carbon source Yield (g L− 1) and surface tension (mN 
m− 1) 

Reference(s) 

Yield Surface tension 

Pseudomonas aeruginosa strain BS2 Distillery and curd whey wastes 0.97 Reduction from 57 to 27 
mN m− 1 

Dubey and Juwarkar (2001) 

Bacillus sp. Cassava flour wastewater 3.0 26.59 Nitschke and Pastore (2003), 2006;  
Nitschke et al. (2004) 

Bacillus subtilis LB5a Cassava wastewater 2.4 Reduction from 51 to 27 
mN m− 1 

Cavalcante Barros et al. (2008) 

Nevskia ramosa NA3 Palm oil mill effluent ND 27.2 Chooklin et al. (2013) 
Six biosurfactant-producing strains; 

strain S2 
Oilfield wastewater ND 25.7 Liu et al. (2013) 

Rhamno lipid production by 
recombinant 
Pseudomonas aeruginosa 

Raw cheese whey and olive oil mill wastewater 13.3 ND Colak and Kahraman (2013) 

Pseudozyma tsukubaensis Cassava wastewater ND 26.87 Cavalcante Fai et al. (2015) 
Rhamnolipid production using 

Pseudomonas SWP-4 
Waste Cooking Oil 13.93 Reduction from 71.8 to 

24.1 mN m− 1 
Lan et al. (2015) 

Sophorolipid from Starmerella 
bombicola MTCC 1910 

Synthetic dairy waste water and waste oil 2.8 g/ 
100 mL 

ND Vidhya et al. (2015) 

Bacillus subtilis Industrial waste containing high rate of glucose ND Reduction from 70 to 44 
mN m− 1 

Secato et al. (2016) 

Bacterial isolates from the Mexican 
state of Chiapas 

Two agro-industrial wastes -Waste Cooking Oil 
(WCO) and Coffee Wastewater (CW) 

3.7 Reduction from 50 to 
29–30 mN m− 1 

Yanez-Ocampo et al. (2017) 

Bacillus licheniformis and Bacillus 
clausis 

Pharmaceutical effluents ND ND Akintokun et al. (2017) 

Surfactin produced by Bacillus 
subtilis LB5a 

Cassava wastewater ND ND Cosmann et al. (2017) 

Bacillus subtilis UCP 0146 Cassava wastewater 2.69 39 Maia et al. (2018) 
Pseudomonas aeruginosa S5 Cooking wastewater ND Reduction from 72 to 30 

mN m− 1 
Sun et al. (2019) 

Bacillus subtilis MTCC 1427 Spent wash ND Reduction from 72 to 29 
mN m− 1 

Veena-Kumara-Adi and Savitri (2019) 

Serratia marcescens UCP 1549 Cassava flour wastewater and corn waste oil ND 25.92 Araújo et al. (2019)  
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2012; Mussatto et al., 2011). More examples of biosurfactants produc-
tion using different wastewater as a substrate are presented in Table 4. 
The different wastewater (industrial wastewater, WCO and CW waste-
water, cassava wastewater, etc.) can be cheap and attractive source of 
nutrients for microorganisms to produce value-added products like 
biosurfactants. However, optimization of their addition to nutrient 
media, cultivation parameters such as temperature, duration, agitation 
speed, pH in addition to refining both upstream and downstream pro-
cesses for product recovery remains important challenges for bio-
surfactants production from wastewater in industrial scale. 

3.2. Bioplastics 

Traditional plastics pose a problem for the planet, whether it is due to 
the traditional fuels used to produce them or the detrimental chemicals 
released during their exposure in environment and during slow degra-
dation. Bioplastics are regarded as the most promising alternative to 
traditional plastics and a way to reduce environmental damage. The 
main bioplastic which production is combined with the utilization of 
different waste sources is polyhydroxyalkanoates (PHAs). PHAs are the 
non-toxic, insoluble in aqueous media, moldable biopolymer, which can 
be used for production of packing materials, films, bottles, and in 
biomedical applications such as tissue engineering (Mayeli et al., 2015). 
The main metabolic pathway related with PHA production are presented 
in Table 2. Due to the high demand for application, the reduction of 
production costs of PHAs is very important. A cost reduction involved 
several aspects: 1) cheap substrates; 2) improved novel fermentative 
strategies; 3) improved recovery and purification steps and 4) use of 
microorganisms accumulating PHAs to high level (Khatami et al., 2021). 
Earlier reviews and research reports focused on bioplastics production 
using food wastes as additional nutrient component for microorganisms 
(Bengtsson et al., 2008; Bosco and Chiampo, 2010; Chakravarty et al., 
2010; Khardenavis et al., 2007; Mohanty et al., 2021; Nielsen et al., 
2017; Tsang et al., 2019). However, the production of bioplastics using 
wastewater from other sources has not been given enough attention. 
Ceyhan and Ozdemir (2011) produced poly-β-hydroxybutyrate (PHB) 
from domestic wastewater using Enterobacter aerogenes 12Bi strain. The 
use of the domestic wastewater (DWW) as carbon source resulted in the 
achievement of PHB that made up more than 90% of the dry cell weight. 
Ben et al. (2011) reported bioplastic production using wood mill efflu-
ents as feedstock and Mayeli et al. (2015) applied petrochemical 
wastewater as carbon source for production of PHB by Bacillus axar-
aqunsis. The PHA yield was 6.33 g L− 1 concentration, corresponding to 
66% of cell dry weight. In 2015 Morgan-Sagastume et al. proposed a 
pilot-scale process: it was operated over 22 months at the Brussels North 
Wastewater Treatment Plant (WWTP) in order to evaluate PHA pro-
duction integration with services of MWW and sludge management. The 
biomass production with 0.5 gPHA gVSS− 1 mentioned as realistically 
achievable within the typically available carbon flows at municipal 
waste management facilities. 

The newest research analyzed application of MWW for production of 
PHA and possible combination of production of these bioplastics with 
wastewater treatment plants (WWTPs) in Germany (Pittmann and 
Steinmetz, 2017). The authors described detoxification of the MWW 
coupled with production of value-added products. However, food in-
dustry wastewater including pickle industry wastewater with high 
organic content are among the most inexpensive sources for PHA pro-
duction (Guventurk et al., 2020). The authors use two laboratory scale 
sequencing batch reactors for cultivation enriched microbial culture 
under aerobic feeding conditions. PHA content was 1.820 mg COD L− 1 

(44% in the biomass). It can be summarized that the combination of 
microorganisms grown on wastewater and bioplastics production can be 
suitable strategy for both wastewater management and economic 
important biopolymers production. However, acid production during 
PHA polymerization requires control since acid composition can affect 
the composition and mechanical characteristics of PHA. Engineering of 

microorganisms and successful screening for enhanced PHA production 
may be helpful to improve PHA yield. 

3.3. Organic acids 

Production of organic acids and wastewater management are related 
in two ways: 1) the wastewater can be a source of recovery of essential 
organic acids and 2) wastewater can serve as carbon and other nutrient 
sources for cultivation of microorganisms to produce organic acids. A 
natural/organic acid is a natural compound with acidic properties. The 
most widely recognized natural acids are carboxylic acids, whose 
causticity is related with their carboxyl gathering. Natural acids basi-
cally contain hydrogen and carbon with another component. The car-
boxylic acids are known as volatile fatty acids (VFAs) or short-chain 
unsaturated fats (SCFAs). The VFAs come in close vicinity of bacteria 
during their random and regular movement in AD digestor. Hence, VFAs 
are broadly present in actuated slop, landfill leachates and wastewater. 
The detachment of natural buildups from wastewater discharged from 
enterprises is significant for contamination control and recuperation of 
valuable materials. Squander waters contain huge amounts of natural 
acids such as acetic, propionic and formic acids perceived as a huge cost 
to the business. The removal of organic acids from wastewater and 
recycling use could be an ideal option for wastewater management. 
Chantarasukon et al. (2016) suggested that most common acids present 
in wastewater are acetic, formic, propionic, isobutyric, caproic and 
valeric acids. These organic acids are important in many industrially 
sectors (food industry, textile, tanning, rubber processing manufacture 
of pharmaceuticals, etc.). Thus, highly efficient methods are required for 
the inexpensive and bioeconomic production of organic acids. Various 
advanced techniques including electrodialysis, electrometathesis, elec-
trodeionization, electro-membrane processes, bipolar membrane have 
been used for the extraction of organic acids from broth medium 
(Handojo et al., 2019). 

The second important topic regarding organic acids is related with 
utilization of sewage sludge to produce biogas. During the second phase 
of biomethane production (Table 2), anaerobic acidification results in 
the production of VFAs including acetic, propionic, butyric and valeric 
acid (Khan et al., 2016; Lim and Vadivelu, 2019; Moestedt et al., 2019). 
Darwin et al. (2019) used the sugar-containing wastewater for anaerobic 
acidification to produce organic acids and ethanol. Earlier, Hwang et al. 
(2001) applied swine wastewater (SwWW) to maximize acetic acid 
production in partial acidogenesis. The production and extraction of 
VFAs in this process depends on several factors: a) the used reactor type; 
b) substrate composition and product spectrum; c) temperature and pH; 
d) retention time; e) organic loading rate (Darwin et al., 2019; Gracia 
et al., 2020; Khan et al., 2016; Strazzera et al., 2018). Thus, the waste-
water is promising feedstock to produce value-added compounds such as 
different organic acids. The development of strategies corresponding the 
circular bioeconomy principles and combining wastewater management 
and organic acids production remain an important future research topic 
and industrial challenge. 

3.4. Biopesticides 

The wastewater can be promising nutrient source for cultivation of 
Bacillus thuringiensis (Bt) which is a well-known producer of bio-
pesticides. Biopesticides derived from B. thuringiensis (Bt) are the most 
prominent biological agents for selective control of pest insects The 
feedstock used for the production of Bt-based biopesticides makes up a 
substantial part (35–59% approximately) of the overall production cost 
(Stanbury et al., 1995). Therefore, a cheap, simple and widely available 
raw material is needed for the effective commercial production of Bt 
toxin (Yezza et al., 2006). Wastewater and wastewater sludge have been 
extensively explored for the Bt biopesticide as a novel value-addition 
approach (Hoa et al., 2014; Montiel et al., 2001; Vidyarthi et al., 
2001; Yezza et al., 2004, 2005). Yezza et al. (2006) used starch industry 
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wastewater (SWW), slaughterhouse wastewater (SHWW) and secondary 
sludges from three different wastewater treatment as feedstock to pro-
duce Bt-based biopesticides. The authors found that secondary sludges 
and SWW act as good raw materials for the production Bt biopesticide 
with higher yield. Ndao et al. (2017) and Kumar et al. (2019b) reported 
the production of Bt-based biopesticide formulation using SWW as 
substrate. The unit production cost was estimated to be $2.54 L-1 for 5 
million L plant capacity. The results were obtained at pilot plant (2000L 
capacity fermenter). These data suggested reliable production of 
BT-based toxins by using wastewaters as feedstock. The recent study 
(Keskes et al., 2020, Keskes et al., 2021) proposed enhanced production 
of Photorhabdus temperate biopesticides using Tunisian wastewater and 
wastewater from food industry as a raw material. These several studies 
clearly showed that wastewater can be applied to produce biopesticides. 
However, the application of this combination in industrial scale is still 
limited by costly pretreatment and low yield of entomotoxicity. The 
improvement of entomotoxicity level is the next goal. 

3.5. Pharmaceutical biomolecules 

The production of vitamins, antibiotics and anticancer drug pre-
cursors from wastewater is a topic of discussion and a field of research 
and challenge for both academic an industrial sector worldwide. Would 
it be really feasible to extract such high value compounds or not? Very 
limited number of reports are currently available regarding this matter. 
Some findings of the possibilities of the extractions of Vitamin B12 are 
shortly presented in the present review. 

One potential wastewater source which has been successfully 
exploited for production of vitamin B12 is tofu wastewater (Yu et al., 
2015). Tofu is a traditional oriental food and its production results in a 
generation of substantial amounts of wastewater (Yonezawa et al., 
2012). The tofu wastewater displays COD values ranging from 17 to 26 
g L− 1 and BOD from 5.8 to 7.9 g L− 1, respectively (Belén et al., 2012). 
Tofu wastewater has a high content of proteins, oligosaccharides, and 
isoflavones that can be used as important ingredients in purified form for 
functional food products. However, for now tofu wastewater is not 
properly utilized. Despite the development of isolation and fermentation 
technology for vitamin B12, the low yield and impurities such as other 
pharmaceutical biomolecules still prevent the production of B12 by 
using tofu wastewater in the large scale. 

4. Practical applications and future research prospects 

The practical applications of wastewater treatment and recovery of 
value-added products solely depend on the cost and efficiency of the 
process. A great success has been achieved in the bioelectricity gener-
ation using fuel cells, other bioenergy products like biomethane, bio-
hydrogen and biogas production are also currently intensively 
investigated. However, generation and accumulation of different 
wastewaters is a major challenge that needs to be overcome to achieve 
successful circular bioeconomy because the wastewater cannot be stored 
for longer time due to various detrimental effects on the living system. 
Different research data revealed that the production or recovery of 
organic acids and other chemical or complex biological molecules from 
wastewater remain challenging with high cost of recovery process. 
Overall, the use of microorganisms for the generation of bioelectricity 
using MFCs and other biogases seems to be more practical and feasible as 
compared to the recovery of complex molecules. In bioenergy genera-
tion microbes utilize most of the soluble impurities/pollutants from the 
wastewater for their growth and simultaneously generate the energy. 
Such approach can help to create cleaner environment and lead towards 
a sustainable circular bioeconomy. Nonetheless, microbial consortia 
generally need a balanced nutrient composition, ambient temperature 
and pH range. These are the challenges in the wastewater biorefinery 
always encountered by the researchers at large scale. Moreover, in order 
to avoid this limitation integrated system of bio-refinery to extract the 

feedstock, nutrient, energy rich compounds with direct application in 
the bioenergy generation should be implemented. Advanced techniques 
are also required to remove the newly emerging contaminants such as 
plastic waste, nanoscale particles, and heavy metal ion impurities to 
maintain the standard of water quality to an appropriate level. Pres-
ently, wastewater management and biorefineries aimed to extract the 
value-added products are playing a crucial role in the economic growth. 
The circular economy application with ecosystem protection should be 
considered while recovering the products of commercial values. 
Maximum utilization of natural bioconversion machinery, including 
plants, algae, and microorganisms could help to reduce the overall 
operational cost of wastewater biorefinery. However, the design of 
bioresource recovery should emphasize on lowering the demand of 
treatment operations with maximum extraction of value-added products 
using inexpensive steps. 

5. Conclusion 

This review presents the bio-based production of various high-value 
and bioenergy-based products by using wastewater resource. Resource 
recovery processes and emerging techniques from wastewater have been 
explored for their future possibilities and sustainability. However, in-
tegrated system of bio-refinery to effectively extract the feedstock, 
nutrient, energy rich compounds with direct application in the bio-
energy generation should be implemented. Thus, maximum utilization 
of natural bioconversion machinery, including plants, algae, and mi-
croorganisms could help to reduce the overall operational cost of 
wastewater biorefinery. As far as time of treatment and recovery is an 
important parameter in wastewater remediation, a more emphasis 
should be given to transfer the chemical and physical methods from lab 
to field scale operation to improve the sustainability. The social and 
public perceptions of these products are equally necessary especially in 
the case of feedstocks or food nutrients. 
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