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Abstract

Underutilizedmarine resources (e.g., algae, fish, and shellfish processing by-products), as
sustainable alternatives to livestock protein and interesting sources of bioactive com-
pounds, have attracted the attention of the researchers. Aquatic products processing
industries are growing globally and producing huge amounts of by-products that often
discarded as waste. However, recent studies pointed out that marine waste contains
several valuable components including high-quality proteins, lipids, minerals, vitamins,
enzymes, and bioactive compounds that can be used against cancer and some
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cardiovascular disorders. Besides, previously conducted studies on algae have shown
the presence of some unique biologically active compounds and valuable proteins.
Hence, this chapter points out recent advances in this area of research and discusses
the importance of aquaculture and fish processing by-products as alternative sources
of proteins and bioactive compounds.

1. Introduction

The current food supply system based on intensive agriculture has

not only limited the number of plants and animal species in our diet

but also contributed to the depletion of natural resources (Nadathur,

Wanasundara, & Scanlin, 2016). About 37% of cultivated land worldwide

is used for feed production to generate animal protein. Besides, the produc-

tion of vegetable proteins requires less water, land, nitrogen, and fossil

fuel than those of animal-derived protein. Therefore, sustainable strategies

(e.g., obtaining of proteins from alternative sources and the creation of

new high-value products from underutilized waste streams) have been pro-

posed in order to reduce environmental footprint (Henchion, Hayes,

Mullen, Fenelon, &Tiwari, 2017). There are several options of highly nutri-

tious protein sources still not mass exploited (e.g., indigenous pulses and root

crops, ancient grains, insects, lower organisms, marine algae or by-products

from different industries) (Bleakley & Hayes, 2017; Hayes, 2018; Kim et al.,

2019; Nadathur et al., 2016).

In addition to environmental concerns, consumers are increasingly inter-

ested in safe, nutritious, and healthy food products. Moreover, the excessive

intake of proteins from terrestrial animals, linked to saturated fatty acids and

cholesterol, is considered as a risk factor of certain chronic diseases develop-

ment. On the one hand, the consumption of aquatic products is believed to

have several healthy effects, and consequently, the production of different

edible marine species through aquaculture techniques for human consump-

tion has risen over the last years (FAO, 2018a), leading to high volumes

generation of by-products from fish processing. On the other hand, healthy

bioactive compounds from natural sources, including those of marine origin,

have gained great importance in recent years. Marine environment is

constituted by a great amount and biodiversity of plants, animals and micro-

organisms adapted to so varied environmental conditions that the substances

they produce for survival exhibit a broad panel of interesting biological

activities (de Vera et al., 2018; Herrero, Mendiola, Plaza, & Ibañez, 2012;

Ibañez, Herrero, Mendiola, & Castro-Puyana, 2012). In this sense, several
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types of secondary metabolites and a large mixture of biogenesis metabolites

have been isolated from marine organisms, as well as many biological

activities (antimicrobial, antitumor, antidiabetic, anticoagulant, antioxidant,

anti-inflammatory, antiviral, antimalarial, antitubercular, anti-aging anti-

fouling, and antiprotozoal) with industrial and therapeutic potential have

also been described (Alves et al., 2018).

It is estimated that by 2050 the world population will exceed 9 billion

people (Tian, Bryksa, & Yada, 2016). This expected increase in the global

population will be associated with a high demand for food products with

high nutritional quality that can be produced in an environmentally friendly

way. Therefore, achieving a healthy diet through sustainable foods will be

one of the challenges for researchers and food producers in the next years. In

this context, special attention is given to protein and bioactive compounds

from both underutilized marine species and fish processing by-products. In

this regard, this chapter describes the valuable compounds that might be

obtained from algae and seafood processing by-products, highlighting their

biological activities and to a lesser extent their potential applications.

2. Fish by-products

The amount of fish produced worldwide reaches around 171 million

tons, of which 80 million tons are from aquaculture (Marc Antonyak,

Lukey, & Cerione, 2018). In 2016, a great diversity of species was raised

in aquaculture, among them, common carp (Cyprinus carpio) (8%), Nile

tilapia (Oreochromis niloticus) (8%), bighead carp (Hypophthalmichthys nobilis)

(7%), Catla (Catla catla) (6%), Atlantic salmon (Salmo salar) (4%), and rainbow

trout (Oncorhynchus mykiss) (2%) were the major species produced (Marc

Antonyak et al., 2018).

In 2015, fish accounted for about 17% of animal protein consumed by

the global population (Marc Antonyak et al., 2018). Moreover, FAO

reported that the fish consumption raised an average rate of about 1.5%

per year, i.e., from 9.0kg in 1961 to 20.2kg in 2015 (in per capita terms)

(Marc Antonyak et al., 2018). Moreover, seafood is a valuable source of

bioactive compounds such as peptides, amino acids, omega-3 long-chain

polyunsaturated fatty acids (PUFAs), vitamins (e.g., vitamins A and D)

and minerals such as calcium, potassium, and zinc (Kundam, Acham, &

Girgih, 2019; Marc Antonyak et al., 2018). The fish composition consists

of 15–30% proteins, 0–25% fat, and 50–80% moisture depending on the

species, age, gender, health, and harvesting season (Caldeira et al., 2018).
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For example, white fish, such as cod and hake, contains around 20% protein,

80% water, 0.5–3% oil, minerals, vitamins, carbohydrates, and other com-

pounds. On the other hand, oily fish, such as mackerel and salmon, contain

20% protein, 10–18% oil, and 62–70% water (Kundam et al., 2019). Among

20% and 80% of fish is considered as waste by the fish processing industry,

depending on several parameters such as the fish type and the processing

specifications (Caldeira et al., 2018).

This waste usually includes head, viscera, skin, bones, and scales with

ranges of 9–12%, 12–18%, 1–3%, 9–15% and 5% of the whole fish weight,

respectively (Villamil, Váquiro, & Solanilla, 2017). It should be noted

that recent studies showed that such waste can be considered as a valuable

by-product source of value-added compounds. Consequently, considerable

attention has been paid in the nutrients and bioactive compounds present

in fish by-products. These materials are considered as sustainable sources

for pharmaceutical, nutraceutical and cosmeceutical industries (Kundam

et al., 2019; Marc Antonyak et al., 2018).

2.1 Nutrients and bioactive compounds from fish by-products
Fish bioactive compounds are substances present in fish by-products with

biological activity. These constituents are beneficial to human health

(Kundam et al., 2019). These health benefits are accomplished through

multiple biological activities, including antioxidant activity, hormones

mediation, immune system enhancement and facilitation of substances

transition through the digestive tract, butyric acid production in the colon

(it favors acidification, which improves intestinal health), and absorption

and/or dilution of substances in the gut (Kundam et al., 2019).

Thus, fish by-products are an effective source of bioactive compounds

that may be used as nutritional supplements and provide medical and health

benefits. Fig. 1 shows the main by-products from fish processing and some

compounds obtained from them. Many studies have been conducted to

extract bioactive compounds from different by-products. Some of these

studies are listed in Table 1.

2.1.1 Proteins
Fish proteins are rich sources of essential (e.g., leucine and lysine) and non-

essential amino acids (e.g., aspartic and glutamic acids) (Shahidi &

Ambigaipalan, 2018). Protein-rich by-products include backbone, skin,

head, viscera, and blood that may be used to produce collagen/gelatin

and proteoglycan, bioactive peptides, protein hydrolysates, among others.
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Up to 10–20% of total fish protein can be present in the fish by-products

(Zamora-Sillero, Gharsallaoui, & Prentice, 2018). Both these essential

amino acids and the bioactive peptides obtained from fish by-products have

great potential as beneficial compounds for improving health (Hamed,
€Ozogul, €Ozogul, & Regenstein, 2015).

2.1.1.1 Collagen and gelatin
Collagen is a fibrous and structural protein present in the extracellular space

of fish and contributes to the physiological function of tissues in bones,

tendons, skin, head, cartilage, and muscle (Raman & Gopakumar, 2018).

It is the most abundant single protein present in fish, representing 25%

of the total protein (Caldeira et al., 2018).

Collagen has a wide range of applications in the health-related sectors,

specifically in cosmetics, pharmaceutical industry and medical care (includ-

ing plastic surgery, orthopedics, ophthalmology, and dentistry) (Silva et al.,

2014). In fact, there are many types of collagen however the most common

form in fish by-products is Collagen type I and it is found in the connective

tissues, skin, muscles, bone (Caldeira et al., 2018) and cornea (Raman &

Gopakumar, 2018). Actually, collagen has been obtained from the skin

of different fish types (Chi et al., 2014). Furthermore, fish collagen, follow-

ing their extraction, may be further enzymatically hydrolyzed to release

Fig. 1 Fish by-products andmain compounds obtained from them. Adapted fromMarti-
Quijal, F. J., Remize, F., Meca, G., Ferrer, E., Ruiz, M.-J., & Barba, F. J. (2020). Fermentation in
fish and by-products processing: An overview of current research and future prospects.
Current Opinion in Food Science, 31, 9–16. https://doi.org/10.1016/j.cofs.2019.08.001.
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Table 1 Examples of valuable compounds with biological activities that are extracted from the by-products of various marine species.
By-
products Source Valuable compounds Biological activities References

Skin Tilapia

(Oreochromis niloticus)

Gelatin hydrolysate/

active peptides

ACE inhibitory simulated

gastrointestinal digestion

Thuanthong, De Gobba, Sirinupong,

Youravong, and Otte (2017)

Chum salmon

(Oncorhynchus keta)

Collagen peptide/

bioactive peptides

Antioxidant Pei et al. (2010)

Atlantic salmon

(Salmo salar L.)

Collagen hydrolysates Antihypertensive Gu, Li, Liu, Yi, and Cai (2011)

Salmon

(Oncorhynchus keta)

Oligopeptides Antidiabetic Zhu, Peng, Liu, Zhang, and Li (2010)

Seabass (Lates calcarifer) Gelatin hydrolysate/

bioactive peptides

Antioxidant,

immunomodulatory,

antiproliferative

Sae-leaw, O’Callaghan, Benjakul, and

O’Brien (2016)

Gelatin hydrolysate/

bioactive peptides

Antioxidant Mirzapour-Kouhdasht, Sabzipour, Taghizadeh,

and Moosavi-Nasab (2019)

Pacific cod

(Gadus macrocephalus)

Gelatin hydrolysate/

bioactive peptides

ACE inhibitory Ngo, Vo, Ryu, and Kim (2016)

Bluefin leatherjacket

(Navodon septentrionalis)

Bioactive peptides Antioxidant Chi, Wang, Hu, et al. (2015) and Chi, Wang,

Wang, Zhang, and Deng (2015)

Tilapia

(Oreochromis niloticus)

Three bioactive

peptides

Antidiabetic Wang et al. (2015)

Scales Tilapia

(Oreochromis niloticus)

Gelatin hydrolysate/

bioactive peptide

ACE inhibitory Zhang, Tu, Shen, and Dai (2019)



Head Bluefin leatherjacket

(Navodon septentrionalis)

Protein hydrolysate/

bioactive peptides

Antioxidant Chi, Wang, Wang, et al. (2015)

Bluefin tuna (Thunnus

thynnus)

Protein hydrolysate Antioxidant Bougatef et al. (2012)

Tilapia (Oreochromis

niloticus)

Bioactive peptides Antimicrobial Robert et al. (2015)

Sardinella (Sardinella aurita) Four bioactive peptides Antioxidant Bougatef et al. (2010)

Salmon

(Oncorhynchus keta)

ω-3 PUFAs, EPA, and

DHA

Nitric oxide (NO) inhibitory,

tumor necrosis factor alpha

(TNFα) inhibitory, and
anti-inflammatory

Ahmad, Rudd, Kotiw, Liu, and Benkendorff

(2019)

Bone Indian mackerel

(Rastrelliger kanagurta)

Protein hydrolysate/

bioactive peptides

Antioxidant Sheriff, Sundaram, Ramamoorthy,

and Ponnusamy (2014)

Alaska pollack (Theragra

chalcogramma)

Bioactive peptides Ca-binding Jung et al. (2006)

Tuna (Thunnus alalonga) Bioactive peptides Antioxidant Je, Qian, Byun, and Kim (2007)

Hoki (Johnius belengerii) Calcium peptide Ca-binding Kiml and Jung (2007)

Bioactive peptide Antioxidant Kim, Je, and Kim (2007)

Liver Atlantic cod

(Gadus Morhua L.)

ω-3 PUFAs, EPA, and

DHA

Antibacterial Ilievska, Loftsson, Hjalmarsdottir,

and Asgrimsdottir (2016)

Continued



Table 1 Examples of valuable compounds with biological activities that are extracted from the by-products of various marine species.—Cont’d
By-
products Source Valuable compounds Biological activities References

Viscera Rain bow trout

(Oncorhynchus mykiss)

Protein hydrolysate/

bioactive peptides

Antibacterial Wald, Schwarz, Rehbein, Bußmann, and

Beermann (2016)

Black pomfret

(Parastromateus niger)

Protein hydrolysate/

bioactive peptides

Antioxidant Jai Ganesh, Nazeer, and Sampath Kumar (2011)

Black scabbardfish

(Aphanopus carbo)

Protein hydrolysates/

bioactive peptides

Antioxidant Batista, Ramos, Coutinho, Bandarra,

and Nunes (2010)

Sardinella (Sardinella aurita) Protein hydrolysate/

bioactive peptides

Antioxidant Souissi, Bougatef, Triki-Ellouz, and Nasri

(2007)

Smooth hound (Mustelus

mustelus)

Protein hydrolysate/

bioactive peptides

Antioxidant, anti-ACE and

antibacterial activities

Abdelhedi et al. (2016)

Sardine (Sardinops sagax) Omega-3 PUFAs,

EPA, and DHA

Nitric oxide (NO) inhibitory,

tumor necrosis factor alpha

(TNFα) inhibitory, and
anti-inflammatory

Ahmad et al. (2019)

Red snapper (Lutjanus

campechanus)

Protolithic enzyme

(protease)

Protolithic activity Sabtecha, Jayapriya, and Tamilselvi (2014)

Seer fish (Scomberomorus

commerson)

Great barracuda

(Sphyraena barracuda)

ACE, angiotensin-converting enzyme; PUFA, polyunsaturated fatty acids; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.



physiologically active peptides. Especially, some collagen-derived peptides

could exhibit interesting antioxidant activity (Chi et al., 2014), antimicrobial

activity against different strains of bacteria (Ennaas, Hammami, Beaulieu, &

Fliss, 2015), potent antihypertensive activity through ACE inhibitory

properties (Alemán, Gómez-Guill�en, & Montero, 2013).

Gelatin is a proteinaceous macromolecule obtained by thermal denatur-

ation of collagen with a kinetic irreversible process. It shares some of the

collagen’s properties because of their similar composition. Thus, it can be

used to improve the consistency, elasticity, and stability of foods, as well

as, to produce edible and biodegradable films that increase the shelf life of

food products (Caldeira et al., 2018). Moreover, it was also reported that fish

gelatin had higher antioxidant activity those of synthetic ones (Ishak &

Sarbon, 2018). Several studies extracted gelatin from fish by-products

whereas fish skin was the main source of gelatin (Irwandi et al., 2009). It

was extracted from the skin of seabass (Lates calcarifer) (Sae-leaw et al.,

2016) and pacific cod (G. macrocephalus) (Ngo et al., 2016). Also, gelatin

was extracted from the bones (black tilapia) (Zakaria, Hidayah, & Bakar,

2015) and scales bighead carp (Hypophthalmichthys nobilis) (Huang et al.,

2017) and the head of mackerel (Scomber scombrus) (Khiari, Rico, & Ana

Belen Martin-Diana, 2011).

2.1.1.2 Bioactive peptides
Fish bioactive peptides mainly consist of 2–20 amino acids, which are avail-

able in all parts of fish or incorporated in fish protein. However, these

peptides are inactive within the native proteins and are activated after being

released by digestion in vivo (proteolysis) or by enzymatic hydrolysis in vitro

which is the best method to obtain protein hydrolysate or bioactive

properties (Zamora-Sillero et al., 2018).

Moreover, active peptides extracted from fish by-products display mul-

tiple biological activities based on amino acid composition and sequence.

They also play a great role in pharmaceutical and medical applications which

result in the promotion of human health and may be helpful in the preven-

tion and treatment of several chronic diseases. Thus, the obtained peptides

can act as antioxidants, antidiabetic, immunomodulatory, antiproliferation

and antimicrobial agents among others (Kim & Wijesekara, 2010).

Different fish species by-products are rich in bioactive peptides. Several

studies have shown that head, viscera, skin, and backbone are good sources

of protein hydrolysates. Seven antioxidant peptides were purified from the

combined head and viscera of sardinella (Sardinella aurita); these peptides

9Aquaculture by-products as a source of bioactive compounds



demonstrated high antioxidant activity, measured with DPPH radical

scavenging assay (Bougatef et al., 2010). Tilapia by-product (head, frames,

and viscera) hydrolysate had a high peptide content and a well-balanced

amino acid profile; Robert et al. (2015) characterized the peptide fraction

that yielded 1374 unique peptides and highlighted the high peptide diversity

of the hydrolysate. Also, bioactive peptides, isolated from the head (Bougatef

et al., 2012) and bone ( Je et al., 2007) of tuna, have shown good antioxidant

activities.

In addition to the antioxidant peptides that can be naturally present,

peptides from protein hydrolysates have been reported to have bioactivity.

In this context, bioactive peptides isolated from Atlantic salmon (Salmo salar)

skin, bone and muscle extraction of gelatin hydrolysate have several biolog-

ical activities such as antioxidant, ACE inhibitory and antidiabetic activity

through DPP-IV inhibition (Neves et al., 2017).

Moreover, peptides hydrolysates were extracted by other authors from

skin gelatin of seabass (Lates calcarifer) (Sae-leaw et al., 2016) and unicorn

leatherjacket (Karnjanapratum, O’Callaghan, Benjakul, & O’Brien, 2016)

having both immunomodulatory and antiproliferative activities.

Moreover, Gu et al. (2011) isolated 11 peptides from salmon skin collagen

after enzymatic hydrolysis, which showed an important ACE inhibitory

activity and might be functional as useful foods and antihypertensive agents.

In another study, Alaska Pollock collagen skin was used to generate iron-

chelating peptides after being treated by commercial enzymes and one

tripeptide contained amino acid sequence with high iron-chelating activity

was detected (Guo et al., 2013).

2.1.2 Lipids
Fish oils containing omega-3 PUFAs and providing a myriad of health

benefits have been produced from fish by-products (Soldo et al., 2019).

They diminish the likelihood of vascular disease, cancer, diabetes and

depression (Ivanovs & Blumberga, 2017). They also affect the immune sys-

tem and ensure a proper neural development (Ivanovs & Blumberga, 2017).

One of the main sources of omega-3 PUFAs (DHA and EPA) is fatty fish

such as herring, sardine, salmon, and mackerel (Hamed et al., 2015;

Kundam et al., 2019). The quantity and composition of these oils are highly

dependent on the species, season and location of catching sites (Hamed

et al., 2015).

In the whole, fish fatty acids (FA) are found in the subcutaneous tissue,

viscera, muscle tissue, liver, mesenteric tissue, and head. Considering fish
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by-products, FA can be obtained mainly in the fish, skin, gut, head and bone

from different fish species. For example, extraction of PUFAs was obtained

from the bones of cod, blue whiting, salmon, trout, herring, mackerel and

horse mackerel (Toppe, Albrektsen, Hope, & Aksnes, 2007) and from the

viscera of tilapia (Oreochromis niloticus) (Shirahigue et al., 2016) and common

carp (Cyprinus carpio L.) (Lisichkov, Kuvendziev, Zekovi�c, & Marinkovski,

2014). Also, PUFA (omega-3) was extracted from mackerel skin (Sahena

et al., 2010).

In one study, lipids from Australian sardine (Sardinops sagax) viscera and

salmon (Salmo salar) head were extracted and large amounts of omega-3

PUFAs, EPA, and DHA were found (Ahmad et al., 2019).

In addition, it is well known that fish oils are a rich source of vitamins

(A and D). Vitamin A is concentrated mostly in fish liver oils. Halibut,

sardine, and cod contain vitamin A and D in their liver (Kundam et al.,

2019), while herring, mackerel, trout and salmon have vitamin D in their

tissues, also yellow tuna contain vitamin D in its bone (Talib & Zailani,

2017). These vitamins are commonly included in dietary supplements for

several applications, such as bone health or antioxidant formulations

(Harris, Morrow, Titgemeier, & Goldberg, 2017).

2.1.3 Minerals
Fishbones generate a huge amount of minerals. Inorganic minerals constitute

approximately 60% of fish bones. Thus, fish bones are an important source

of hydroxyapatite, calcium, phosphate, zinc, selenium, and iron (Bruno,

Ekorong, Karkal, Cathrine, & Kudre, 2019). Minerals were isolated from

various fish species. Seabass (Lates calcarifer) bone was a source of calcium

and phosphor (Pal et al., 2017). Also, calcium, phosphor, magnesium,

and strontium were isolated from the scale of Catla catla fish (Paul, Pal,

Roy, & Bodhak, 2017). These minerals are important compounds in

nutraceutical formulations destinated to improve health, mainly bone health

but also cardiovascular or immunological diseases (Webb, 2015).

3. Shellfish by-products

After industrial processing, 75% of shellfish weight ends up as

by-products (Hamed, €Ozogul, & Regenstein, 2016). These by-products

are currently disposed of by incineration or returning them to the environ-

ment, whichmight lead to health and environmental concerns. So, it is a real

challenge both industrially and ecologically the processing of this waste
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(Yadav et al., 2019). From these by-products, compounds with different

biological properties of great interest can be obtained; as chitin/chitosan

and its derivatives, carotenoids, glycosaminoglycans (GAG) or bioactive

peptides, among others (Fig. 2). Therefore, a good approach for the utiliza-

tion of this waste would reduce its environmental impact while revaluing.

3.1 Chitin/chitosan
Chitin is a biopolymer that can be obtained from shellfish waste, mainly

from the exoskeletons of crustaceans. The shell of crustaceans is composed

of 13–42% chitin, in addition to having a content of 30–50% mineral salts

and 30–40% protein (Vo & Kim, 2014). It is the second most abundant

polysaccharide in the world, after cellulose (Hamed et al., 2016). Both chitin

and derivatives have great importance in biomedicine as they are biocom-

patible and non-potential toxic compounds. They are also renewable and

biodegradable so their environmental impact is low.

Since chitin is a water-insoluble compound, its transformation into

chitosan is often chosen. To obtain chitosan, a chemical or enzymatic

process of deacetylation is followed. Chitosan is the name given to chitin

when an acetyl group is removed, and different degrees of deacetylation

can be achieved (Menon & Lele, 2015). When 50% of the acetylated form

Fig. 2 Shellfish and main bioactive compounds obtained from them.
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is exceeded with respect to the non-deacetylated form the compound

becomes soluble in an acid solution (Shavandi, Hou, Carne, McConnell, &

Bekhit, 2019). To be suitable for use, at least 70% deacetylation of chitosan

is required (Menon & Lele, 2015).

Both chitin and chitosan have applications in the biomedical field.

Among other uses, they are intended for the production of drugs, as it

can be used to control their bioavailability (Nivethaa, Martin, Frank-

Kamenetskaya, & Kalkura, 2020). It also has great applications in tissue

engineering and wound healing (as a biomaterial) (De Masi et al., 2019;

Jangid, Hada, & Rathore, 2019).

However, it is not only used as a carrier or excipient, but also for its own

bioactivity. Among the most outstanding biological activities of chitin

and its derivatives, it also has antitumor, antimicrobial, antioxidant, anti-

coagulant and even antifungal activity. The antitumor activity of these

compounds has been demonstrated both in vivo and in vitro, mainly as con-

sequence of a direct action of chitosan on tumor cells (Simonaitiene, Brink,

Sipailiene, & Leskauskaite, 2015), by increasing the production of natural

killer (Chatterjee, Chatterjee, & Guha, 2014; Lopez-Moya et al., 2015),

or by inhibiting the angiogenesis of tumor cells and suppressing the tumor

(Li et al., 2019). Its antimicrobial activity has also been demonstrated, and

the mechanism of action depends entirely on the molecular weight of the

polysaccharide. If the polysaccharide has a high molecular weight, it can

bind to the bacterial cell wall and interfere with the ion exchange of the cell

(Rahaiee, Shojaosadati, Hashemi, Moini, & Razavi, 2015; Salis et al., 2015).

In contrast, polysaccharides with a small molecular weight penetrate the

bacteria and interfere with the processes of DNA transcription and

mRNA synthesis (Lindborg et al., 2015). It has been proven that the anti-

microbial activity of chitosan is more intense in Gram-negative bacteria

(Zeng et al., 2014).

Another remarkable biological activity of chitosan is its anticoagulant

capacity. It has been reported that it has a slightly lower anticoagulant capac-

ity than heparin, suggesting an alternative use (Arasukumar, Prabakaran,

Gunalan, & Moovendhan, 2019; Yang et al., 2013).

On the other hand, chitosan displayed antioxidant properties. The

antioxidant capacity depends on both its molecular weight and the degree

of acetylation, since they also depend on the molecular weight, being more

active a lower molecular weight and a higher degree of deacetylation

(Anraku et al., 2018). The mechanism by which this is explained could

be related to the chemical structure of the chitosan molecule, more
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specifically to the amino group present in C2 and the hydroxyl group present

in C6 (Park, Koppula, & Kim, 2010). Due to its antioxidant capacity,

chitosan has been proven effective in diseases in which oxidative stress

has a great implication, such as metabolic syndrome or chronic renal failure

(Anraku et al., 2018).

Finally, it has also been shown that chitin/chitosan has an antifungal activity

that varies according to the fungus and plants that it contaminates depending

on molecular weight and degree of acetylation (Verlee, Mincke, & Stevens,

2017). This could have great potential in the field of agriculture.

3.2 Carotenoids
Carotenoids are lipophilic compounds responsible for yellow and red colors

in nature, both in plants and animals (Wade, Gabaudan, & Glencross, 2017).

They can be divided into two groups: in the first one, the compounds are

only composed of C and H atoms (e.g., carotene and xanthophylls), while in

the second group the compounds have at least one functional group with

O atoms (e.g., astaxanthin and lutein) (Shavandi et al., 2019). Specifically,

the carotenoid responsible for the pink pigmentation of crustaceans is

astaxanthin, so this carotenoid can be recovered from its by-products

(Zhao et al., 2019).

For its extraction, the process consists a deproteinization and deminer-

alization of the sample followed by carotenoid extraction through the appli-

cation of organic solvents (Shavandi et al., 2019).

As for the biological activity of astaxanthin, its high antioxidant potential

can be highlighted which is 500 times higher than that of vitamin

E (Mao, Guo, Sun, & Xue, 2017), which makes it the largest natural

antioxidant in the world. This high antioxidant power is due to the high

presence of double bonds in its structure (Zhao et al., 2019). Thanks to

its high antioxidant capacity, astaxanthin has different biological activities,

such as antitumor activity, anti-inflammatory activity, prevention of cardio-

vascular diseases and atherosclerosis, liver protection and protection of the

nervous system against diseases with a high component of oxidative stress

(Amengual, 2019; Atalay, Kuku, & Tuna, 2019; Dutta, Mahalanobish,

Saha, Ghosh, & Sil, 2019; Fakhri, Abbaszadeh, Dargahi, & Jorjani, 2018;

Ni et al., 2015; Prameela et al., 2017).

3.3 Glycosaminoglycans (GAGs)
The GAGs are polysaccharides composed of repetitions of disaccharides

linked by an oxygen atom. These disaccharides are generally formed by a
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unit of uronic acid and a unit of an amino sugar (Valcarcel, Novoa-Carballal,

P�erez-Martı́n, Reis, & Vázquez, 2017). Within the GAGwe find chondroi-

tin sulfate, dermatan sulfate or heparin sulfate among others. These GAGs

are part of the connective tissue, forming the extracellular matrix together

with collagen and other structural molecules (Menon & Lele, 2015).

These molecules have various biological activities. One of the most

important and also best known is anticoagulant activity. In this sense, several

studies have obtained heparin from shellfish by-products, specifically from

shrimp heads. However, its effectiveness as an anticoagulant is less than

heparin from mammals (Brito et al., 2014; Chavante et al., 2014).

On the other hand, its anti-inflammatory activity is also remarkable. This

property is also related to heparins. In fact, it has been seen that heparin

obtained from shrimp has anti-inflammatory activity, reducing the activity

of metalloproteinase 9, an enzyme involved in the inflammatory response

(Brito et al., 2008).

Another widespread use of GAGs is their use in the field of regenerative

medicine. The GAGs can bind to proteins and form proteoglycans. These

proteoglycans can capture growth factors, which have great relevance in

the process of differentiation and cellular function (Place, Evans, &

Stevens, 2009). Therefore, this makes GAGs especially suitable for tissue

regeneration. It was reported that hyaluronic acid and chondroitin sulfate

are among the most important GAGs used in regenerative medicine

(Salbach et al., 2012).

In addition to these very relevant applications, their use in other diseases,

such as cancer, has been explored. In this sense, some studies have shown

in vitro how sulfated GAGs, mainly dermatan sulfate and heparan sulfate,

obtained from Norway lobster, have antiproliferative activity in human

colon tumor cells (Sayari et al., 2016). This capacity can be explained by

the high presence of sulfur in its composition.

Finally, they also have antiviral properties. Glycosaminoglycans obtained

from squid have demonstrated their antiviral activity against viruses such as

herpes simplex virus, T-cell leukemia virus or dengue (Valcarcel et al.,

2017). It has also been seen that heparin sulfate groups can inhibit the human

immunodeficiency virus (HIV) by electrostatic interaction with basic amino

acids (Chen & Huang, 2018).

3.4 Bioactive peptides
Several articles have described different biological activities of peptides

obtained from the by-products of shellfish. Bioactive peptides are amino acid
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sequences that are inactive when they are included in a protein but active

when are released. They contain between 2 and 20 amino acids, and their

bioactivity is based on the amino acid sequence and its length (Lorenzo et al.,

2018). Specifically, peptides with antihypertensives (inhibiting angiotensin-

converting enzyme), antioxidants, and antimicrobials have been obtained

from shellfish by-products (Menon & Lele, 2015).

The antioxidant activity has been related to the presence of amino acids

such as histidine, tyrosine, methionine, and cysteine in the peptide sequence.

It is also related to other hydrophobic amino acids such as hydroxyproline,

leucine, alanine, proline, glycine, valine and repetitive glycine-proline

sequences (Neves, Harnedy, & FitzGerald, 2016). Suárez-Jim�enez et al.

(2019) have obtained peptides with antioxidant activity from hydrolysates

of squid by-products. In this study, we observe that the peptides with

the highest activity are those with a smaller size. In addition, these authors

obtained peptides with antiproliferative activity and related the mechanism

of action with the ability of these peptides to act directly on tumor cells and

their cytotoxic effect.

On the other hand, antihypertensive activity is related to very short

peptide sequences (less than nine amino acids), in whose sequence are the

amino acids glycine, tyrosine, valine, phenylalanine, isoleucine, arginine

or asparagine (Amado, González, Murado, & Vázquez, 2016; Neves

et al., 2016). In this sense, Apostolidis, Karayannakidis, and Lee (2016)

obtained peptides with antihypertensive activity from hydrolysates of squid

by-products. This observation indicates that the most active peptides are

those with a lower molecular weight.

The ability of some peptides to suppress appetite has also been described,

and this is due to the structural similarity of these molecules with gastrin or

cholecystokinin (Neves et al., 2016). Cudennec, Ravallec-Pl�e, Courois, and
Fouchereau-Peron (2008) obtained peptides that stimulate cholecystokinin

release in vitro from brown shrimp protein hydrolysates.

Peptides with antimicrobial activity are related to the presence

of positively charged residues (Menon & Lele, 2015). Antimicrobial pep-

tides obtained from shrimps and prawns have in their structure a high

presence of proline, arginine and glycine residues (Hayes & Flower,

2013). Jiang et al. (2018) and Jiang, Liu, Yang, and Hu (2018) obtained

antibacterial peptides from crab shells and squid by-products. In addition,

several authors have obtained antimicrobial peptides from shrimp,

scallop, abalone, and oyster (Harnedy & Fitzgerald, 2013; Hayes &

Flower, 2013).
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4. Marine algae (macro and micro)

Marine algae are a diverse group of photosynthetic organisms from

aquatic environments. They are usually classified as macro- and microalgae.

Macroalgae or seaweeds are multicellular organisms that can be divided

into brown algae (Phaeophyta), red algae (Rhodophyta) and green algae

(Chlorophyta), while microalgae are unicellular organisms constituted by

prokaryotic green-blue algae (cyanobacteria) and eukaryotic microalgae

(microalgae) (Martı́nez-Franc�es & Escudero-Oñate, 2018). The chemical

composition of marine algae depends on the species, habitat, and environ-

mental conditions. Fig. 3 shows some compounds obtained from macro-

and microalgae with nutritional value. From a nutritional point of

view, edible seaweeds are rich in minerals and vitamins, being recognized

as an ideal food source of iodine as well as one of the few vegetable

sources of vitamin B12 (Chandini, Ponesakki, Suresh, & Bhaskar, 2008).

For centuries, different species of seaweeds such as Ulva (Chlorophyta),

Porphyra (Rhodophyta), Undaria, Laminaria, Himanthalia and Saccharina

(Phaeophyceae) have been harvested for human consumption, especially

in coastal areas of the Asiatic continent. In the same way, the microalgae

known as Spirulina have been consumed in Central America and Africa

regions (Pereira & Carvalho, 2014). Later, the interest was in applying edible

algae as food ingredients to improve the quality of different food products.

Fig. 3 Main proteins and bioactive compounds obtained from macro- and microalgae.
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For example, sea spaghetti (Himanthalia elongata), nori (Porphyra umbilicalis)

and wakame (Undaria pinnatifida) increased the content of sulfur amino acids

and minerals in meat products, while Ulva lactuca and Laminaria algae were

added to bread processing (Ścieszka & Klewicka, 2018). In contrast,

European countries focused the interest on the gelling properties of algal

polysaccharides and therefore, carrageenan, agar and alginates have been

used as additive agents in the food industry (Pereira & Carvalho, 2014).

In addition to the nutritional and industrial characteristics, the most recent

scientific knowledge about their composition and biological activities have

placed marine algae as a promising source of proteins and bioactive

compounds. As a result, the high demand for both macro- and microalgae

worldwide, sustainably led their production through aquaculture techniques.

Current aquaculture is the main source of edible aquatic plants, account-

ing for 96% of production in 2016. The volume of global farmed algae

has increased by about 55% in the last two decades. Of the total million tons

of algae from aquaculture in 2016, seaweeds represented 30 million tons

while only 89,000 tons were recorded for microalgae (although this last

value is understated because of unavailable data from important producers

and farmed algae for scientific purposes are not included) (FAO, 2018a).

There are more than 200 commercialized macroalgae, but only 10 species

are intensively cultivated: Saccharina japonica, Undaria pinnatifida and

Sargassum fusiforme for brown seaweed; Porphyra spp., Eucheuma spp.,

Kappaphycus alvarezii and Gracilaria spp. for red seaweed; and Enteromorpha

clathrata, Monostroma nitidum, and Caulerpa spp. for green seaweed (FAO,

2018b). Regarding farmed microalgae, the main cultivated species are

Spirulina spp., Chlorella spp., Haematococcus pluvialis, and Nannochloropsis

spp. (FAO, 2018a).

4.1 Nutritional value
4.1.1 Proteins
From the nutritional point of view, algae are an interesting alternative source

of proteins. Protein content in algae varies depending on the species, habitat

and seasonal period. Microalgae present higher protein concentration

than macroalgae. In general, protein fraction (dry weight) of green and

red seaweed ranged from 10% to 47%while the protein percentage of brown

seaweed is less than 15% (except for wakame (Undaria pinnatifida) whose pro-

tein level is 11–24%) (Fleurence, 1999; Herrero et al., 2012). Microalgae can

contain more than 60% protein. The cyanobacteria Spirulina platensis present

a protein composition of 43–63% so it is considered a food supplement
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(Villarruel-López, Ascencio, & Nunõ, 2017). In addition, the essential

amino acid profile of algae meets the requirements of the Food

and Agriculture Organization of the United Nations (FAO). In this sense,

the essential amino acid content of the most common microalgae and

cyanobacteria has been reviewed by Barba, Grimi, and Vorobiev (2014).

However, in vitro bioaccessibility studies suggest that unprocessed seaweed

proteins have reduced digestibility compared to that of other protein sources

(Villarruel-López et al., 2017).

On the other hand, other non-nutritional protein compounds such as

enzymes produced by algae and peptides derived from their proteins have

also been considered as bioactive compounds. For example, researchers

revealed that various types of enzymes, such as mannuronan C5 epimerase,

can be produced by algae (Parte, Sirisha, & D’Souza, 2017). Many of the

algal producing enzymes are known to be important for the food and phar-

maceutical industries (Inoue et al., 2016; Levy-Ontman, Fisher, Shotland,

Tekoah, & Malis Arad, 2015). For instance, enzymes of Closterium,

Cylindrotheca, and Chaetoceros muelleri are reported to be effective in diethyl

phthalate degradation (Gao & Chi, 2015). Besides, glutathione peroxidase,

ascorbate peroxidase, and catalase can be produced by algal (Babu et al.,

2014; Moenne, González, & Sáez, 2016). Also, alginate can be produced

from the brown algae wherein a symbiotic association between bacteria

and seaweeds results in the production of alginate lyases (Ertesvåg, 2015).

Moreover, a variety of bioactive peptides have been produced by enzymatic

hydrolysis of the proteins of algal (Beaulieu, 2019). In this context, an

investigation showed that the health state of bread can be enhanced by

the incorporation of an algae renin inhibitory dulse protein hydrolysates

(Fitzgerald et al., 2014). Such studies indicate that bioactive peptides

obtained from algae can be considered valuable ingredients that can be used

for food production.

4.1.2 Polysaccharides
Marine algae contain mucopolysaccharides, and storage and cell wall-

structured polysaccharides. Some seaweed species contain polysaccharides

in a range from 4% to 76% (dry weight), with the highest levels found in

species such as Ascophyllum, Palmaria, Porphyra and Ulva (Usman, Khalid,

Usman, Hussain, & Wang, 2017). Both, the cell wall structure and

storage polysaccharides, are species-specific. Green algae contain sulfuric

acid polysaccharides, sulfated galactans, and xylans. Also, the brown algae

presents alginic acid, fucoidan, laminarin, and sargassan. Besides, the red
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algae contain agars, carrageenans, xylans, floridean starch, water-soluble sul-

fated galactan, as well as the mucopolysaccharide porphyrin (Chandini et al.,

2008; Kraan, 2012). As polysaccharides do not participate in the nutri-

tional value of algae, they are considered as a source of dietary fiber

resistant to enzymatic hydrolysis of the intestinal microflora of the human

digestive tract.

The dietary fibers included in marine algae are divided into insoluble

(cellulose, mannans and xylene) and water-soluble (agars, alginic acid,

furonan, laminaran, and porphyrin) dietary fibers (Kraan, 2012). The diverse

chemical composition of dietary fiber polysaccharides has been considered

responsible for their possible biological activities. In this sense, sulfated poly-

saccharides have shown many health benefits as anticoagulant, antioxidant,

antiproliferative, antitumoral, anti-inflammatory, antiviral, and cholesterol-

lowering agents (Mišurcová, Orsavová, & Ambrožová, 2015).

Fucoidan, in particular, has been shown to exhibit antiviral and anti-

inflammatory properties as well as anti-metastatic effects in metastasized

invasive human lung cancer cells (Khalid, Abbas, Saeed, Bader-Ul-Ain, &

Ansar Rasul Suleria, 2018). In addition, a recent review concluded that

fucoidan, laminarin sulfate, and carrageenan directly slowed the progression

of the atherosclerotic lesion while alginate, ulvan (sea lettuce), and agar

reducing the accompanying risk factors (Patil et al., 2018).

4.1.3 Lipids
The lipid content frommarine algae differs between macro- and microalgae.

While seaweeds usually present a low percentage of lipids (1–3% of the dry

weight), many microalgae contain 20–50% of lipids (dry biomass) and even

values ranging from 1% to 70% have also been reported (Barkia, Saari, &

Manning, 2019). However, the lipid profile of both types of algae has raised

considerable interest in recent years due to the high content of PUFAs.

Typical PUFAs from seaweeds are α-linolenic (18:3n-3), octadecatetraenoic
(18:4n-3), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids

(Kendel et al., 2015). On the other hand, the complete lipid profile

(saturated, monounsaturated and PUFAs) from the most common used

microalgae and cyanobacteria have been shown by researchers (Barba

et al., 2014). In addition to playing an important role in the prevention

of cardiovascular diseases, osteoarthritis, and diabetes, these PUFAs possess

antimicrobial, antiviral, anti-inflammatory and antitumoral properties

(Kendel et al., 2015). PUFAs and glycolipids obtained from U. armoricana

and S. chordalis have been shown to have promising antitumor activities
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(Kendel et al., 2015). As current unbalanced diets do not provide suffi-

cient amounts of omega-3 PUFAs to satisfy human physiological require-

ments, marine algae are one the new alternative sources for helping to

support healthy diets for people (Tocher, Betancor, Sprague, Olsen, &

Napier, 2019).

4.1.4 Vitamins
In general, marine algae contain both water- and fat-soluble vitamins.

Apart from the considerable vitamin functions for the body, vitamin

E (α-tocopherol), vitamin C (ascorbic acid), and partially vitamin B1 and

niacin have been considered responsible for the algal antioxidant activity

(Škrovánková, 2011).

4.2 Bioactive and antioxidant compounds
Seaweed pigments are chlorophylls and carotenoids such as carotenes

(β-carotene) and xanthophylls (fucoxanthin, violaxanthin, antheraxanthin,

zeaxanthin, lutein, neoxanthin, among others) (Aryee, Agyei, & Akanbi,

2018). The most studied algae for natural carotenoids include brown

seaweed (Laminaria spp. and Undaria pinnatifida), red seaweed (Corallina

elungata and Jania rubens), and green microalgae (Dunaliella salina, Chlorella

spp., Haematococcus pluvialis, and Spirulina spp.) (Christaki, Bonos,

Giannenasa, & Florou-Paneria, 2013). Main algal carotenoids are

astaxanthin, fucoxanthin, β-carotene, lutein and zeaxanthin. The antioxi-

dant capacity of astaxanthin, the major carotenoid found in the unicellular

green algae Haematococcus pluvialis, has been reported to be about 10 times

greater than β-carotene, lutein, zeaxanthin, canthaxanthin and over 500

greater than that of α-tocopherol. In addition, the in vitro and in vivo studies
have shown the effectiveness of astaxanthin against coronary, chronic

inflammatory, diabetes, gastrointestinal, liver and neurodegenerative dis-

eases as well as against atherosclerosis, ischaemic brain development and

metabolic syndrome (Christaki et al., 2013).

Moreover, the β-carotene produced from the halophilic microalgae

Dunaliella salina inhibited neoplastic cells and reduced fibrosarcoma in

Wistar rats (Villarruel-López et al., 2017). Pigments from macroalgae have

also shown health benefits. Fucoxanthin, the most important bioactive

carotenoid in the chloroplasts of brown seaweeds such as Ascophyllum

nodosum and Laminaria spp. has been reported for showing antiproliferative

effects on prostate and human colon cancer cells, efficacy in the treatment of

obesity and type 2 diabetes as well as anti-inflammatory and antioxidant
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properties (Christaki et al., 2013; Herrero et al., 2012). In addition, complex

compounds constituted by protein-bound pigments that exhibit bioactivity

have also been found. For example, phycobiliproteins, only present in red

algae (phycoerythrin) and blue-green algae (phycocyanin), are characterized

by containing the phycobilin pigment in their structure and this pigment has

been related to hepatoprotective, anti-inflammatory and antioxidant prop-

erties of phycobiliproteins (Herrero et al., 2012).

Polyphenols are plant secondary metabolites whose structures vary from

simple molecules to highly polymerized compounds. As aquatic plants,

macro- and microalgae are the main marine sources of polyphenolic

compounds. Green and red algae contain bromophenols, phenolic acids,

and flavonoids while only in brown algae have been found phlorotannins

(Gómez-Guzmán, Rodrı́guez-Nogales, Algieri, & Gálvez, 2018).

In general, these phytochemicals have been considered bioactive com-

pounds with potential health benefits in numerous human diseases due to

their antioxidant activity as well as enzyme inhibitory effect and antimicro-

bial, antiviral, anticancer, antidiabetic, antiallergic and anti-inflammatory

activities (Gómez-Guzmán et al., 2018).

Phlorotanin, in particular, has been associated with anti-HIV, anticancer,

bactericidal, radio-protective, antiallergic, and other health-beneficial bio-

logical activities shown by Ecklonia cava, Ecklonia stolonifera, Ecklonia kurome,

Eisenia bicyclis, Ishige okamurae, Sargassum thunbergii,Hizikia fusiformis,Undaria

pinnatifida, and Laminaria japonica (Freile-Pelegrı́n & Robledo, 2013; Khalid

et al., 2018). Regarding microalgae, there is limited information about

specific phenolic compounds in microalgae and the activity they provide.

Jerez-Martel et al. (2017) identified and quantified the six widely distributed

phenols in nature (gallic acid, (+) catechin, (�) epicatechin, syringic acid,

protocatechuic acid, and chlorogenic acid) in crude extracts from several

cyanobacteria and microalgae. They determined their antioxidant activity

and observed a direct relation between the phenolic compounds and the

activity tested for some strains (particularly, Euglena cantabrica).

Sterols are another interesting group of compounds extracted from

marine algae. Not only sterols but also some of their derivatives have shown

anticholesterol, anti-inflammatory and anticancer properties (Ibañez et al.,

2012; Michalak & Chojnacka, 2015). On the other hand, as in bacteria

and plants, glycolipids such as mono- and digalactosyldiacylglycerol as well

as sulfoquinovosylacylglycerol are present in marine algae and they could

have an important role in inflammatory diseases (Talero et al., 2015).

Finally, several secondary metabolites (quinone-based natural products,
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small amides, and hierridin B) produced by different cyanobacteria

have exhibited cytotoxicity toward HT-29 colon cancer cells (Olsen,

Toppe, & Karunasagar, 2014; Talero et al., 2015).

5. Conclusions

Aquaculture provides a new source of high-quality food for the grow-

ing population. Besides, marine by-products offer many beneficial capabil-

ities that make them valuable materials for the food and pharmaceutical

industry. The nutritional value and bioactivity of these compounds and

their derivates enlarge the scope of their applications. Researchers pointed

out the potential value-added products that can be produced from aquatic

waste. These include nutrients (e.g., high-quality oils, proteins, and polysac-

charides) and bioactive compounds such as bioactive peptides and polyphe-

nols. These findings might be later appreciated by the industry, resulting in

developing commercial valorization techniques for processing the aquatic

processing waste.
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Ibañez, E., Herrero, M., Mendiola, J. A., & Castro-Puyana, M. (2012). Extraction and char-
acterization of bioactive compounds with health benefits from marine resources: Macro
and micro algae, cyanobacteria, and invertebrates. In M. Hayes (Ed.), Vol. 9781461412.
Marine bioactive compounds: Sources, characterization and applications (pp. 55–98). USA:
Springer. https://doi.org/10.1007/978-1-4614-1247-2_2.

Ilievska, B., Loftsson, T., Hjalmarsdottir, M. A., & Asgrimsdottir, G. M. (2016). Topical for-
mulation comprising fatty acid extract from cod liver oil: Development, evaluation and
stability studies. Marine Drugs, 14(6), 105–115. https://doi.org/10.3390/md14060105.

Inoue, A., Satoh, A., Morishita, M., Tokunaga, Y., Miyakawa, T., Tanokura, M., et al.
(2016). Functional heterologous expression and characterization of mannuronan
C5-epimerase from the brown alga Saccharina japonica. Algal Research, 16, 282–291.
https://doi.org/10.1016/j.algal.2016.03.030.

Irwandi, J., Faridayanti, S., Mohamed, E. S. M., Hamzah, M. S., Torla, H. H., & Che
Man, Y. B. (2009). Extraction and characterization of gelatin from different marine fish
species in Malaysia. International Food Research Journal, 16(3), 381–389.

Ishak, N. H., & Sarbon, N. M. (2018). A review of protein hydrolysates and bioactive pep-
tides deriving from wastes generated by fish processing. Food and Bioprocess Technology,
11(1), 2–16. https://doi.org/10.1007/s11947-017-1940-1.

Ivanovs, K., & Blumberga, D. (2017). Extraction of fish oil using green extraction methods:
A short review. Energy Procedia, 128, 477–483. https://doi.org/10.1016/j.egypro.2017.
09.033.

Jai Ganesh, R., Nazeer, R. A., & Sampath Kumar, N. S. (2011). Purification and identifi-
cation of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975)
viscera protein hydrolysate. Food Science and Biotechnology, 20(4), 1087–1094. https://
doi.org/10.1007/s10068-011-0147-x.

Jangid, N. K., Hada, D., & Rathore, K. (2019). Chitosan as an emerging object for biological
and biomedical applications. Journal of Polymer Engineering, 39, 689–703. De Gruyter.
https://doi.org/10.1515/polyeng-2019-0041.

Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization
of an antioxidant peptide obtained from tuna backbone protein by enzymatic
hydrolysis. Process Biochemistry, 42(5), 840–846. https://doi.org/10.1016/j.procbio.
2007.02.006.

27Aquaculture by-products as a source of bioactive compounds

https://doi.org/10.1007/s13668-017-0198-6
https://doi.org/10.1007/s13668-017-0198-6
https://doi.org/10.1007/s13668-017-0198-6
https://doi.org/10.1002/9781119385332.ch13
https://doi.org/10.1002/9781119385332.ch13
https://doi.org/10.1002/9781118412893.ch3
https://doi.org/10.1002/9781118412893.ch3
https://doi.org/10.1002/9781118412893.ch3
https://doi.org/10.3390/foods6070053
https://doi.org/10.3390/foods6070053
https://doi.org/10.1007/978-1-4614-3348-4_35
https://doi.org/10.1007/978-1-4614-3348-4_35
https://doi.org/10.1080/10942912.2017.1295388
https://doi.org/10.1080/10942912.2017.1295388
https://doi.org/10.1007/978-1-4614-1247-2_2
https://doi.org/10.1007/978-1-4614-1247-2_2
https://doi.org/10.3390/md14060105
https://doi.org/10.3390/md14060105
https://doi.org/10.1016/j.algal.2016.03.030
https://doi.org/10.1016/j.algal.2016.03.030
http://refhub.elsevier.com/S1043-4526(20)30001-2/rf0305
http://refhub.elsevier.com/S1043-4526(20)30001-2/rf0305
http://refhub.elsevier.com/S1043-4526(20)30001-2/rf0305
https://doi.org/10.1007/s11947-017-1940-1
https://doi.org/10.1007/s11947-017-1940-1
https://doi.org/10.1016/j.egypro.2017.09.033
https://doi.org/10.1016/j.egypro.2017.09.033
https://doi.org/10.1016/j.egypro.2017.09.033
https://doi.org/10.1007/s10068-011-0147-x
https://doi.org/10.1007/s10068-011-0147-x
https://doi.org/10.1007/s10068-011-0147-x
https://doi.org/10.1515/polyeng-2019-0041
https://doi.org/10.1515/polyeng-2019-0041
https://doi.org/10.1016/j.procbio.2007.02.006
https://doi.org/10.1016/j.procbio.2007.02.006
https://doi.org/10.1016/j.procbio.2007.02.006


Jerez-Martel, I., Garcı́a-Poza, S., Rodrı́guez-Martel, G., Rico, M., Afonso-Olivares, C., &
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Development of thermosensitive chitosan/glicerophospate injectable in situ gelling
solutions for potential application in intraoperative fluorescence imaging and local ther-
apy of hepatocellular carcinoma: A preliminary study. Expert Opinion on Drug Delivery,
12(10), 1583–1596. https://doi.org/10.1517/17425247.2015.1042452.

Sayari, N., Balti, R., Ben Mansour, M., Ben Amor, I., Graiet, I., Gargouri, J., et al. (2016).
Anticoagulant properties and cytotoxic effect against HCT116 human colon cell line of
sulfated glycosaminoglycans isolated from the Norway lobster (Nephrops norvegicus) shell.
Biomedicine and Pharmacotherapy, 80, 322–330. https://doi.org/10.1016/j.biopha.2016.
03.027.
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