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Abstract 

Marine macroalgae are available in large quantities in many regions of the world 

and have been widely investigated as potential biosorbents for the removal of metals in 

wastewaters. However, few studies have been published on the biosorption of metals 

with seaweeds waste after the extraction of bioactive compounds.  

This dissertation presents the study about: 1) the valorisation of macroalgae 

biomass based on the biorefinery concept giving rise to added-value byproducts like 

polyphenols and polysaccharides, and 2) the use of the produced waste to remove Cu(II) 

from contaminated wastewaters. 

Chemical characterization of the two seaweeds studied, Ascophyllum nodosum 

and Ulva rigida, was performed. A.nodosum presented a higher percentage of ashes 

(13.8 ± 0.1 %) than U.rigida (10.9 ± 0.2 %). Regarding the percentage of polysaccharides, 

A. nodosum presented a lower percentage (45 ± 2 %) than U. rigida (48.7 ± 0.1 %). About 

the polyphenolic content, A. nodosum presented a higher value (0.95 mg GAE g-1) than 

U.rigida (0.33 mg GAE g-1).   

 FTIR analyses of Ascophyllum nodosum, before and after Cu(II) biosorption, 

identified some of the main functional groups that play a key role in metal biosorption: 

carboxyl functional group – COOH and alcohol functional group - OH. FTIR analyses of 

Ascophyllum nodosum were performed before and after extraction of polyphenols, 

indicating that the lack of this bioactive compounds reduced the hydroxyl stretches. 

 Preliminary biosorption tests for Cu(II) removal by Ascophyllum nodosum before 

and after extraction of polyphenols, present best results with A. nodosum virgin at pH 

values of 4 and 5. The adsorbed amount values obtained were in a range between 2.13-

2.25 mg g-1. 

 The biosorption kinetics was found to be fast, with more than 50% of Cu(II) 

maximum adsorption equilibrium capacity attained within 15 minutes and equilibrium 

reached after 30 minutes. This kinetic data was fitted to pseudo first-order and pseudo 

second-order models. 
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Resumo 

As macroalgas estão disponíveis em grandes quantidades em muitas regiões do 

mundo e têm sido amplamente investigadas como possíveis biossorventes para a 

remoção de metais em águas residuais. No entanto, poucos estudos têm sido publicados 

sobre a biossorção de metais com resíduos de algas após a extração de compostos 

bioativos.  

Esta dissertação apresenta o estudo sobre: 1) a valorização de macroalgas 

baseado no conceito de bio-refinaria dando origem a subprodutos de valor 

acrescentado, como polifenóis e polissacarídeos; 2) a utilização do resíduo obtido, após 

extração, para remover Cu(II) de efluentes contaminados. 

Foi feita a caracterização química das duas macroalgas estudadas, Ascophyllum 

nodosum e Ulva rigida. A alga  A.nodosum apresentou uma maior percentagem de cinzas 

(13,8 ± 0,1%) do que a alga U.rigida (10,9 ± 0,2%). Relativamente à percentagem de 

polissacarídeos, a alga A. nodosum apresentou uma percentagem menor (45 ± 2%) do 

que a alga U. rigida (48,7 ± 0,1%). Em relação aos polifenóis, a alga A. nodosum (0.95 mg 

GAE g-1) apresentou um valor mais alto do que a alga U. rigida (0.33 mg GAE g-1). 

Realizou-se a análise FTIR da alga Ascophyllum nodosum, antes e depois da 

biossorção de Cu (II), onde foram identificados alguns dos principais grupos funcionais 

que desempenham um papel fundamental na biossorção de metais: COOH de carboxilo 

e C-OH de álcool. A análise FTIR da alga Ascophyllum nodosum antes e depois da 

extração de polifenóis, permitiu identificar que a falta deste composto bioactivo reduziu 

os grupos funcionais hidroxilo. 

Os testes preliminares de biossorção de Cu(II) pela alga Ascophyllum nodosum 

antes e após a extração de polifenóis, apresentaram melhores resultados com alga A. 

nodosum virgem nos valores de pH 4 e 5. Obteve-se quantidades adsorvidas na gama 

2,13-2,25 mg g-1. 

No estudo cinético da biossorção de Cu(II) verificou-se que mais de 50% da 

capacidade de biossorção da alga é preenchida nos primeiros 15 minutos e que o 

equilíbrio se atingiu após 30 minutos. Estes dados cinéticos foram representados 

adequadamente pelos modelos de pseudo primeira-ordem e de pseudo segunda-

ordem.  
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1. Introduction  
 

Nowadays, the preservation of the environment is an issue widely discussed in 

order to avoid a sustainability crisis. The impact of industrial and other anthropogenic 

activities, not only in environment, is worrying due to a whole range of consequences 

that are already being felt such as climate change, pollution and crescent contamination 

in water and soil. While sustainability is about the future of our society, for today’s 

industries and businesses, it is also about commercial success. The directive to transform 

businesses to respect environmental limits while fulfilling social wants and needs has 

become an unparalleled platform for innovation on strategy, design, manufacturing and 

brand, offering massive opportunities to compete and to adapt to a rapidly evolving 

world (Sustainability 2016). 

Thus, it is clear to many industry sectors that there is an enormous need to 

promote the use of biotechnology for the creation of bioproducts. Obtained from 

natural sources, bio-based products prevail over conventional fossil-based products in 

reinforcing energy security and reducing green-house gas effects (CO2,CH4,N2O, CFC’s) 

and other air pollutants. Bioproducts are considered sustainable, renewable and 

environment friendly products and are an emerging solution for sustainability issues 

faced by industries. Such requirements are met by algae biomass, an available natural 

resource with a very low cost and the capacity to produce vast array of high-value 

bioactive compounds (Suganya et al. 2016). 

1.1. Algae biomass 
 

Algae are photosynthetic aquatic organisms. They may be unicellular 

(microalgae) or multicellular (macroalgae). Macroalgae or “seaweeds” are an abundant 

multi-cellular plants that can be found in a salt or fresh water. Chemical composition of 

macroalgae species is significantly different from terrestrial plants. They include lower 

contens of carbon, hydrogen and oxygen and higher contents of nitrogen and sulfur than 

that of land-based, lignocellulosic biomass (Ghadiryanfar et al. 2016). According to their 
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pigmentation, they are divided into three broad groups: Brown (Phaeophyta), Red 

(Rhodophyta) and Green (Chlorophyta). Algae are known as a rich source of bioactive 

compounds and the properties of these compounds are used in various branches of 

industry, such as chemical, pharmaceutical, human food, and animal feed production 

and integrated systems of plant cultivation. 

1.2. Macroalgae bioproducts 
 

Algae can be processed in different ways to obtain a wide spectrum of products. 

These products can be divided into bioproducts and biofuels, based on their potential 

usage. The principal bioproducts, in other words, non-energy products from algae are 

polysaccharides, pigments, proteins, lipids and phenolic compounds. 

Marine algae contain large amounts of polysaccharides, such as starch, glucose, 

cellulose, dietary fibres, alginates, carrageenans, agar, fucoidan, mannitol and laminarin 

(Holdt and Kraan 2011). The major polysaccharide constituents of red algae are 

galactans such as carrageenans and agars. Major sugars, present in the brown 

macroalgae are laminarin, mannitol and alginate (Trivedi et al. 2015; Holdt and Kraan 

2011).  Algal polysaccharides represent a class of high-value compounds with many 

downstream applications in food, cosmetics, textiles, stabilizers, emulsifiers, lubricants, 

thickening agents and clinical drugs (Trivedi et al. 2015).  

Besides chlorophyll, the most relevant algae pigments are phycobiliproteins and 

carotenoids. Phycobiliproteins are macromolecules that function as components of the 

photosynthetic apparatus in red algae and they have the potential as natural colorants 

for food, cosmetics and pharmaceuticals (Suganya et al. 2016). Carotenoids are 

isoprenoid molecules that are photosynthesized by plants, fungi and algae. Brown algae 

species contain β-carotene, violaxanthin and fucoxanthin, whereas red algae species 

contain manly α- and β-carotene, lutein and zeaxanthin. β-carotene, lutein, violaxanthin, 

neoxanthin and zeaxanthin are present in green algae species (Kadam et al. 2013). 

Carotenoids have anti-tumor and cancer preventive activity and they are also widely 

used as food colorants and supplements for human and animal feeds (Suganya et al. 

2016).  
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Proteins can be used for different purposes such as animal/fish feeds, fertilizers, 

industrial enzymes, bioplastics and surfactants (Trivedi et al. 2015). The protein content 

of seaweeds differs according to species. Generally, the protein fraction of brown 

seaweeds is lower compared to that of green or red seaweeds (Holdt and Kraan 2011). 

Most seaweed species contain all the essential amino acids and are a rich source of the 

acidic amino acid, aspartic acid and glutamic acid. Essential amino acids such as histidine, 

leucine, isoleucine and valine are present in many seaweeds (Kadam et al. 2013).  

Lipids are a broad group of naturally occurring molecules which includes fatty 

acids, sterols, fat-soluble vitamins (A, D, E and K), phospholipids and glycolipids. Red 

seaweed species contain significant quantities of polyunsaturated fatty acids. All the 

three types of macroalgae have a substantial content of sterols (Holdt and Kraan 2011).  

Phenols are a class of chemical compounds consisting of a hydroxyl group (-OH) 

bonded directly to an aromatic hydrocarbon group, which may confer different and 

often stronger biological activities. Polyphenols in algae are phenolic acids, tannins, 

flavonoids, catechins and pholorannins and are present in most algal groups (Kadam et 

al. 2013). Green and red seaweed have low concentrations of phenols compared to 

brown seaweed species, which have high concentrations of the phenol group 

pholoratannin (Holdt and Kraan 2011). Purified polyphenolic compounds exhibit many 

activities such as antioxidant, anti-radical, UV-protection, metal- chelation (e.g. copper) 

and anti-fouling (Suganya et al. 2016).  

The production of biofuels and biobased chemicals from algae is one of the most 

interesting topics in the sector of the biorefineries. The biorefinery concept integrates 

processes and technologies for an efficient biomass conversion using all components of 

a feedstock. The term “biorefinery” was created to describe the production of biofuels 

as well as high value co-products from biomass by the integration of bioprocessing and 

appropriate low environmental impacting chemical technologies in a cost-effective and 

environmentally sustainable manner (Trivedi et al. 2015). All processes during the 

biorefinery should be resource-efficient, and environmental impacts should be 

minimized or avoided (Jung et al. 2013). Advantages of macroalgae as biofuel feedstock 

includes atmospheric CO2 mitigation, entrapment of HCO3- in the water bodies by 
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reducing their acidic nature and acid rain hazards, promoting green fuel for green earth 

(Bharathiraja et al. 2015). Examples of biofuels obtained from algae are biodiesel, 

biogas, bioethanol and biojet fuel (Trivedi et al. 2015). 

1.3. Metals 
 

The metallurgical and energy production industries, as well as agriculture is 

responsible for the release of various pollutants into aquatic environment, such as 

metals, non-biodegradable dyes and detergents, pesticides and other organic 

pollutants. Metals are recognized as one of the most toxic groups and their occurrence 

in water causes great threats to humans and other living organisms.  

The most common metals found in contaminated surface water, ground water 

and industrial wastewater are: Lead, mercury, chromium, arsenic, cadmium, zinc, 

copper and nickel (He and Chen, 2014). 

Copper (Cu) is a transition metal that is stable in its metallic state and is most 

commonly present in the earth's crust as copper-iron-sulfide and copper sulfide 

minerals, e.g. chalcopyrite (CuFeS2), bornite (CusFeS4) and chalcocite (CuS). Metallic 

copper is malleable, ductile and a good thermal and electrical conductor. It has many 

commercial uses because of its versatility. Copper is used to make electrical wiring, 

pipes, valves, fittings, coins, cooking utensils and building materials. Needed only in 

trace amounts, the human body contains approximately 100 mg. Though an essential 

micronutrient for man, Cu is toxic at high levels and can cause adverse health effects like 

gastrointestinal bleeding, haematuria, intravascular haemolysis, hepatocellular toxicity 

and acute renal failure. Copper is found in surface water, groundwater, seawater and 

drinking-water and in water bodies can damage a variety of fishes and invertebrates. A 

provisional guideline value of 2 mg L-1 for drinking water was established to be 

protective against the adverse effects of copper (WHO 2004). In Portugal, 2 mg L-1 of 

copper is also the limit value for drinking water (Decreto-Lei n.o 306/2007). These metals 

are not biodegradable and therefore their elimination in wastewater is extremely 

important for public health.  
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1.4. Biosorption 
 

Biosorption is a term that describes the removal of heavy metals by the passive 

binding to non-living biomass from an aqueous solution. Comparing with conventional 

methods for removing toxic metals from industrial effluents, the biosorption process 

offers the advantages of low operating cost, minimization of the volume of chemical 

and/or biological sludge to be disposed of, high efficiency in detoxifying very dilute 

effluents and no nutrient requirements (Kratochvil and Volesky 1998). Different kinds of 

natural biomass have been used to remove toxic metals from solution, such as, bacteria, 

fungi, green algae, red algae, brown algae, etc.   

Algae are of special interest in search for and the development of new 

biosorbents materials due to their high sorption capacity and their availability in almost 

unlimited quantities in the seas and oceans. Seaweeds possess a high metal-binding 

capacity with the cell wall playing an important role in binding. This is due to the 

presence of various functional groups such as carboxyl, amino, sulfonic, and hydroxyl 

groups, which can act as binding sites for metals (Murphy et al. 2007). 

Within this context, the aim of this work is to propose an alternative valorisation 

of macroalgae biomass based on the biorefinery concept giving rise to added-value 

byproducts. The waste produced from the bioactive compounds (particularly 

polyphenols compounds) extraction process will be used to remove metals from water 

by biosorption. 
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2. State of the art 

2.1. Macroalgae 
 

Macroalgae has also some unique constituents, including carrageenan, mannitol, 

agar, laminarin, mannan, ulvan, fucoidin, and alginate, all of which are not found in 

microalgae biomass (Jung et al. 2013). In the next table, is shown the biochemical 

characteristics and examples of the three major groups of macroalgae. 

Table 1 - Macroalgae division, biochemical characteristics and examples (Suganya et al. 2016). 

Taxonomic 

group 

Chlorophyll Carotenoids Storage 

products 

Examples 

Chlorophyta 

(Green algae) 

a,b Β-Carotene,lutein Amylose 

(starch), oils 

Ulva rigida, 

Cladophora 

glomerata 

Phaeophyta 

(Brown algae) 

a,c Β-Carotene,fucoxanthin, 

violaxanthin 

Laminarin, 

soluble 

carbo- 

hydrates, oils 

Laminaria 

digitata, 

Ascophyllum 

nodosum 

Rhodophyta 

(Red algae) 

a, rarely d β-Carotene,zeaxanthin Floridean 

starch Oils, 

Glycogen 

Ceramium 

rubrum, 

Gracilaria 

verrucosa 

 

The use of macroalgae is based essentially on the composition of the cell wall.  

Algae cell wall is constituted by different components such as polysaccharides, proteins 

and lipids. Brown algae cell walls are composed mainly by cellulose, alginic acid, 

polysaccharides and polymers complexed with light metals such as sodium, potassium, 

magnesium, calcium. The predominant active groups are alginate and sulphate. Green 

algae have mainly cellulose, while high percentage of the cell wall is protein bonded to 

polysaccharides. Proteins contain functional groups such as amino, carboxyl, sulphate, 

and hydroxyl, which participate significantly on the biosorption process. Red algae 

contain cellulose in cell wall, but their biosorption capacities can be mainly attributed 

on the presence of sulphated polysaccharides made of galactans (He and Chen 2014). 
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 The global harvest of seaweeds for food and algae products is over 3 million tons 

annually, with potential harvests estimated at 2.6 million tons for red algae and 16 

million tons for brown algae (He and Chen 2014). The most dominant producers of 

seaweeds are shown in the next chart. 

 

2.2. Bioproducts extracted from Macroalgae 
 

 Extraction technologies such as enzyme-assisted extraction (EAE), microwave-

assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized liquid 

extraction (PLE) and supercritical fluid extraction (SFE) have been successfully used in 

food and pharmaceutical applications for extraction of bioactive compounds from 

macroalgae biomass (Kadam et al. 2013).  

 EAE is a high bioactive yielding technology by which unnecessary components 

from cell walls are removed and desired bioactives compounds are released. Is a eco-

friendly and nontoxic method that suits well to the extraction of phlorotannins and 

other phenolic compounds from seaweeds, as it assists in breaking the complex bonding 

between phenolics and proteins in seaweed (Kadam et al. 2013). Wang et al. (2010) 

showed that enzyme-assisted extraction was effective in enhancing the recovery of 

polyphenols and other hydrophilic antioxidant compounds from the red algae Palmaria 

palmata. Billakanti et al. (2013) demonstrated the extraction of lipids containing 
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Figure 1 - The main producers of seaweeds (Ghadiryanfar et al. 2016). 
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polyunsaturated fatty acids and fucoxanthin from brown algae Undaria pinnatifida using 

an EAE process followed by dimethyl ether extraction. This process achieve almost the 

complete extraction of lipids and fucoxanthin. 

 MAE uses microwave energy to heat solvents in contact with a sample, rapid 

internal heating brings about effective cell rupture, releasing the analytes into the 

solvent (Vázquez-Delfin et al. 2013). The mechanism of MAE process has some 

advantages over traditional solvent extraction techniques such as improved extraction 

rate, lower use of solvents and improved extraction yield. The results obtained by Yuan 

and D. Macquarrie (2015) demonstrate that sulphated polysaccharides (fucoidans) 

could be successfully extracted from Ascophyllum nodosum by microwave assisted 

extraction technology in a much faster process compared with conventional extraction 

methods. Vázquez-Delfin et al. (2013) concluded that MAE could be an adequate 

procedure for carrageenan extraction from red algae Hypnea musciformis. Sousa et al. 

(2010) demonstrated that applying MAE in the extraction of agar from red algae 

Gracilaria vermiculophylla, higher yields and reproducibility were obtained, when 

compared to conventional extraction methods.  

 UAE is a simple and cost-effective method, that facilitates the extraction of heat-

sensitive compounds with minimal damage. Benefits of using this process include an 

increase of extraction yield and faster kinetics. There are two main types of ultrasound 

equipment that can be employed for extraction purposes: an ultrasonic water bath, 

which was the method used to extract the polyphenols in this study, and an ultrasonic 

probe system fitted with horn transducers (Kadam et al. 2013). Wang et al. (2015) 

studied the UAE of taurine from red algae Porphyra yezoensis. Application of ultrasound 

improves the efficiency of the extraction process, required less extraction time and 

lower operating temperatures to obtain a taurine yield comparable to that obtained 

from conventional extraction. Kadam et al. (2015) studied UAE for the extraction of total 

phenolics, fucose and uronic acid from Ascophyllum nodosum. It was demonstrated that 

UAE can be employed to enhance extraction of bioactive compounds from seaweed. 

 PLE is a sample preparation technique that combines elevated temperature and 

pressure with liquid solvents to achieve fast and efficient extraction of the analytes from 
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the solid matrix (Shang et al. 2011).  This method significantly reduces the quantity of 

solvents used and is a much faster technique than other solvent extraction techniques 

(Kadam et al. 2013). The results by Shang et al. (2011) demonstrated that statistical 

strategy was successfully applied for optimization of PLE method for fucoxanthin 

extraction from brown algae Eisenia bicyclis. This study concluded that PLE can be a 

powerful method, due to a extraction in a relatively short time with a non-toxic solvent. 

Anaélle et al. (2013) demonstrated the application of PLE and SFE in the extraction of 

polyphenols, using the brown algae Sargassum muticum as model. In particular, PLE 

seemed the most promising for the extraction of polyphenols that are endowed with 

useful antioxidant potential. 

 SFE is an eco-friendly technology with minimal or no use of organic solvents, that 

offers a fast extraction rate and high yield. This method has been widely employed in 

the food, pharmaceutical, pesticide and fuel industries (Kadam et al. 2013). In the work 

developed by Fabrowska et al. (2016), SFE has been employed to obtain extracts from 3 

green algae: Cladophora glomerata, Ulva flexuosa and Chara fragilis. Bioactive 

compounds like fucoxanthin, lutein, chlorophyll α and astacene were successfully 

extract by SFE.   

2.3. Biosorption 
 

Metals and similar elements, as metalloids, are a big concern, considering their 

high toxicity. Three kinds of metals are of concern, including toxic metals (such as Hg, 

Cr, Pb, Zn, Cu, Ni, Cd, As, Co, Sn, Sb), precious metals (such as Pd, Pt, Ag, Au, Ru) and 

radionuclides (such as U, Th, Ra, Am) (J. Wang and Chen 2009). These elements should 

be treated when present in waste water and groundwater, because they can be a threat 

to public health when consumed above certain concentrations. 

As mentioned previously, biosorption is a process resulting in the removal of 

substances from solution by non-living biological material (Gadd 2008). 

The biosorption process therefore involves a solid phase, known as biosorbent 

(for example algae) and a liquid phase, solvent (normally water), containing the 

dissolved or suspended species to be sorbed (sorbate). The interaction of metal ions 

with the algae solution occurs in two steps: the first step involves biosorption on the cell 
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surface and occurs shortly after contact between the body and the metal ion. In the cell 

walls are the major biosorption sites which correspond to the functional amine groups, 

amide, hydroxy, carboxyl and phosphate among others (Vidotti and Rollemberg 2004).  

2.3.1. Biosorbents 
 

Nowadays, biosorption is a mature technology for removal of heavy metals due 

to the new discoveries of several biosorbents of different origins. 

Vijayaraghavan and Balasubramanian (2015) mention that the performance of a 

biosorbent not only depends on the chemical composition of the biosorbent and the 

nature of solutes, but is also strongly influenced by operational parameters such as pH, 

temperature, ionic strength, co-ion concentration, sorbent size, reaction time, sorbent 

dosage and initial solute concentration. Among the different operational parameters, 

pH is the most important one which significantly influences the biosorbent 

characteristics and solution chemistry. The binding site functional group of a biosorbent, 

which plays a vital role in biosorption, strongly depends on the solution pH 

(Vijayaraghavan and Balasubramanian 2015).  

A large quantity of materials has been investigated as biosorbents for the 

removal of metals. The tested biosorbents can be basically classified into the following 

categories: bacteria, fungi, yeast, algae, industrial wastes, agricultural wastes and other 

polysaccharide materials. 

Several investigators used low-cost industrial and agricultural wastes for heavy 

metal biosorption (Sud et al. 2008; Abdolali et al. 2014). Among these wastes, crab shell, 

activated sludge and rice husk deserves particular consideration. 

Grimm et al. (2008) compared the removal of copper ions from diluted water 

solutions with three types of biomass: birch wood Betula sp., marine brown alga Fucus 

vesiculosus, and terrestrial moss Pleurozium schreberi. The maximum sorption 

capacities determined from the experimental equilibrium isotherms by applying the 

Langmuir model showed that the algae had the best copper-binding ability, followed by 

the moss and the sawdust. 

Sabela et al. (2016) demonstrated that green vegetable waste derived activated 

carbon (GVW-AC) could be used as an effective biosorbent for the treatment of 
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wastewater containing copper(II) ions. The isotherm study indicated that adsorption 

data correlated well with Langmuir isotherm model. When compared with activated 

carbons derived from other biosorbents, this study concluded that GVW-AC is better in 

terms of cost-effectiveness.  

J.-Y. Wang et al. (2016) studied the biosorption of copper(II) from aqueous 

solutions by rice straw treated with Aspergillus niger, namely fermented rice straw. The 

obtained data suggested that the microbiologically-treated rice straw could become a 

promising biosorbent. 

According to Blázquez et al. (2012), pine cone shell (PCS) was shown to be a 

promising biosorbent for Cu(II) removal from aqueous solutions. The biosorption 

capacity of PCS for Cu(II) was determined with the Langmuir model as 6.81 mg g-1. 

2.3.2. Macroalgae as biosorbent 
 

Marine algae have been the focus of numerous biosorption studies and their 

excellent metal-binding capacity has been well documented. 

Based on a statistical review on biosorption, algae have been used as biosorbent 

material 15.3% more than other kinds of biomass and 84.6% more than fungi and 

bacteria (Anastopoulos and Kyzas 2015).  

He & Chen (2014) mention that the maximum biosorption capacities (qmax in 

the Langmuir isotherm) for Cu(II) uptake with several types of brown algae are quite 

high. Among various brown algae, the Fucus sp. seems to better perform in copper 

uptake. The performance of brown algae is the best among the three macroalgae 

(brown, green and red).  

Freitas (2007) concluded that the maximum biosorption capacity of Cu(II) by A. 

nodosum is 78.2 mg g-1 at room temperature, pH 5.0 and 150 mg L-1 of initial Cu(II) 

concentration. 

Karthikeyan et al.  (2007) investigated the biosorption of Cu(II) with two different 

marine algae: Ulva fasciata (green algae) and Sargassum sp. (brown algae). Equilibrium 

isotherms and kinetics were studied to evaluate the relative ability of the two algae to 

sequester Cu(II) from aqueous solutions. The maximum biosorption capacity obtained 

was 73.5 mg g-1 for U. fasciata and 72.5 mg g-1 for Sargassum sp. at pH 5.5.  
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The capacity of marine green algae Helimeda gracilis for biosorption of Cu(II) ions 

from an aqueous solution was studied by Jayakumar et al. (2014). The biosorption 

followed the Langmuir model with the maximum sorption capacity of 38.5 mg g-1. 

Mata et al. (2008) examined the recovery of cadmium, lead and copper with the 

brown alga Fucus vesiculosus. The metal uptakes deduced from the pseudo-second 

order kinetic model and the Langmuir isotherm model followed this sequence: Cu > Cd 

> Pb. According to the equilibrium constants of the isotherm model, the affinity of 

metals for the biomass followed this order: Pb > Cu > Cd. 

2.3.3. Macroalgae wastes 
 

The use of algal waste for biosorption processes is very promising due to the fact 

that large quantities of algal waste are generated every year and can be reused as 

adsorbent for metals before final disposal. On the other hand, the waste material is 

cheaper that other commercially available adsorbents.  

Vilar et al. (2008) concluded that algae Gelidium biomass, algal waste from agar 

extraction, were able to remove and accumulate Cu(II) from aqueous solutions. For low 

metal concentration in solution the algal waste and algae Gelidium had similar uptake 

capacity, which is an important result due to the economic and ecological advantage 

that the waste has relatively to the algae. When compared with other waste materials, 

the algal waste showed a good adsorption capacity. 

Bulgariu and Bulgariu (2012) investigated the biosorption of Pb(II), Cd(II), and 

Co(II) from aqueous solution on green algae waste. The green algae waste biomass was 

obtained from marine green algae after extraction of oil and, by the results, can be 

successfully used for the biosorption of the metals studied. The biosorption followed the 

Langmuir model with the maximum biosorption capacity of 74.6 mg g-1 for Pb(II) (initial 

concentration = 133 mg L-1) 39.4 mg g-1 for Cd(II) (initial concentration = 68 mg L-1) and 

17.1 mg g-1 for Co(II) (initial concentration = 37 mg L-1) at pH 5.0 for all the metals. 

Roberts et al. (2014), demonstrate that iron-based sorbents, which are a 

promising tool for the removal of Selenium from wastewater, can be produced from the 
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waste biomass that remains after the commercial extraction of agar from farmed 

seaweed Gracilaria edulis. 

2.3.4. Comparative approach of the biosorption capacity 
 

 Table 2 describes the maximum biosorption capacities reported in the literature 

for seaweeds and other types of biosorbents. Along with these values, two other 

important aspects are documented to evaluate the potentiality of a biosorbent, the 

initial copper concentration and pH value. 

Table 2 - Maximum biosorption capacities for copper removal from aqueous solutions at room 
temperature. 

Biosorbent 
Initial metal 

concentration 
(mg L-1) 

pH 
Biosorption 

capacity 
(mg g-1) 

Reference 

Seaweeds     

Ascophyllum nodosum 150 5.0 78.2 (Freitas 2007) 
Sargassum sp. 20 5.5 72.5 (Karthikeyan et al. 

2007) Ulva fasciata 20 5.5 73.5 

Fucus vesiculosus 
100 5.0 105.5 (Mata et al. 2008) 

20 5.5 16.8 (Grimm et al. 2008) 

Sargassum filipendula 135 4.5 84.1 
(Kleinübing et al. 

2011) 

Gelidium 100 5.3 33 (Vilar et al.2008) 

Spyrogyra sp. 100 5.0 38.6 
(Lee and Chang 2011) 

Claphodora sp. 100 5.0 14.7 

Seaweed waste     

Algal waste from agar 
extraction 

100 5.3 16.7 (Vilar et al. 2008) 

Other types     

Arthrospira platensis 
(microalgae) 

100 5.0 40.7 (Markou et al. 2015) 

Chlorella kessleri 
(microalgae) 

20 5.0 24.6 
(Horváthová et al. 

2009) 
Terrestrial moss 20 5.5 8.8 

(Grimm et al. 2008) 
Birch wood, Betula sp. 20 5.5 1.4 

GVW-AC 1.5 3.5 75 (Sabela et al. 2016) 

Fermented rice straw 30 5.3 23.8 
(J.-Y. Wang et al. 

2016) 

Pine cone shell 100 5.0 6.8 (Blázquez et al. 2012) 
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3. Materials and Methods 

3.1. Macroalgae treatment 
 

 In this study, two different macroalgae were used: Ascophyllum nodosum and 

Ulva rigida. The A. nodosum was collected on the Portugal North coast of Atlantic Ocean. 

On the other hand, U. rigida was collected on the Romania Southeast coast of Black Sea. 

The seaweeds were washed firstly with tap water in 3 to 4 washing cycles of 30 

minutes and after with distilled water in 10 to 12 washing cycles of 30 minutes, until the 

washing water reached a conductivity value of less than 10 μS cm-1. The purpose of this 

is to remove the impurities and epiphytes present in the seaweeds. The conductivity 

was measured using a DIST conductivity meter by Hanna Instruments. 

After the washing process, the seaweeds were dried in the oven at 50º C for a 

minimum of 24 hours. The next step was to grind the algae to smaller particle size 

(approximately ≤ 0.5 cm). The grinder used was a RETSCH Grindomix GM200. 

 

3.2. Macroalgae biomass chemical characterization 

3.2.1. Determination of humidity 
 

 Once the drying process was complete, the next step was to determine the 

moisture (humidity) and ash content of the seaweeds.  

 For the determination of total moisture, 3 samples of 1 g, approximately, of each 

macroalgae have been analysed. The samples were prepared in a crucible and weighted 

in a Precisa XT 120 analytical balance. The analysis was run by a RADWAG moisture 

analyser, presented in the Figure 2. 
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3.2.2. Determination of total ash 
 

The determination of ash was carried out using a muffle furnace Vulcan A-550, 

equipment shown in the Figure 3. The analysis of the samples was carried out in 

triplicate. Thus, depending on the density of the dried material, approx. 1-3 g dry algae 

were weighted in a Precisa XT 120 analytical balance and then placed in crucibles. The 

crucibles containing the biomass were heated at 600° C in the muffle furnace for 18 

hours performing weighings at 5, 10, 14 and 18 hours, respectively until reaching a 

constant weight. The empty crucibles have been weighted after calcination at 600° C. 

 

 

 

 

 

 

 

The determination of the ash percentage was calculated by the following 

equation:  %𝐴𝑠ℎ = ( 
𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑎𝑙𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛− 𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑒𝑚𝑝𝑡𝑦

𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑑𝑟𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒− 𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑒𝑚𝑝𝑡𝑦
 ) ×100        (1) 

Figure 2 - RADWAG moisture analyser. 

Figure 3 - Vulcan A-550, a muffle furnace. 
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3.2.3. Determination of total polysaccharides 
 

 To determine the polysaccharides that can be easily hydrolised, two samples of 

2.5 g A. nodosum and two 5 g samples of U. rigida were weighted and added to H2SO4 

(2,5%) solution. For A. nodosum the volume of H2SO4 used was 100 mL and for U. rigida 

was 200 mL. All the mixtures were boiled for 5 hours on a heating mantle with an 

ascending cooler shown in Figure 4 (Rozmarin et al. 1984).  

After the hydrolysis finished, the solution was filtered using filter crucibles (size 

G4), and the residue was washed with hot water until neutral reaction of the rinse 

waters, using pH paper stripes. After cooling, the rinse waters and the filtrate were 

collected together in a 500 mL Erlenmeyer flask, and distilled water was added to make 

up the volume. The residue was dried in the oven at 50º C for a minimum of 24 hours 

and weighted for the determination of hydrolization losses. 

 

 

 

 

 

 

 

 

In order to determine the concentration of glucose in each solution (Ghose 

1987), firstly 200 mL of Dinitrosalicylic Acid (DNS) was prepared with the following 

compounds: 

 150 mL distilled water; 

 1,9876 g of NaOH; 

 1,0069 g of 3,5 DNS (solid); 

 30,2009 g of Rochelle salts (Na-K tartarate); 

Figure 4 - Hydrolization equipment with an ascending cooler and an heating mantle. 
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 0,8439 g of Phenol; 

 0,8266 g of Na metabisulfite. 

2 mL of the hydrolysed sample was placed in a test tube together with 3 ml of 

DNS reagent and with 1 mL of NaOH. The latter was added with the purpose to 

neutralize the sample. Subsequently, the test tubes were boiled for 5 minutes using a 

water bath and then cooled to ambient temperature. The concentrated samples were 

diluted 5 times to obtain the results in the working range. The analysis of the samples 

was done by a Jasco V-550 UV/VIS Spetrophotomer (Figure 5), with the parameters 

presented in Table 3 (Ghose 1987). 

 

 

 

 

 

 

 

 

Table 3 - Standard parameters for the analysis of the glucose concentration. 

Parameter Value 

Photometric mode Abs 

Working range  0.4 – 4 g L-1 

Wavelength 540 nm 

Band Width 0.5 mm 

Scanning speed 400 m min-1 

Start 900 mm 

End 190 mm 

Nºcycles 1 

Data pitch 0 – 1 mm 

Figure 5 - Jasco V-550, an UV/VIS Spetrophotomer. 
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The amount of easily hydrolysable polysaccharides was calculated by using the 

following equation (Rozmarin et al. 1984): 

𝑃𝑜𝑙𝑦𝑠𝑎𝑐𝑐ℎ𝑎𝑟𝑖𝑑𝑒𝑠 (%) =  
𝐶.𝑉.𝐾

𝑔
          (2) 

 where: 

g – mass of dried biomass (g); 

C – the concentration of the reducing substances, obtained from calibration curve 

present in attachments (g L-1); 

V – total volume of the hydrolisate in ml (500 ml); 

K – coefficient for monosaccharides transformation in polysaccharides equal to 0.89 

(Rozmarin et al. 1984). 

3.2.3. Determination of polyphenolic content  

 In order to determine the polyphenolic content of the algae, 25 g of each algae 

were weighted (A.nodosum and U.rigida) and placed in an Erlenmeyer flask. Then 250 

mL of 70% ethanol was added to the flask.  The mixture was placed in an Bandelin 

Sonomex ultra-sound bath (as shown in Figure 6) for 45 min at 60 °C. The liquid present 

in the bath was distilled water. After the process, the samples were filtrated (Lazar et al. 

2016). The biomass left was dried in the oven at 50º C for a minimum of 24 hours and 

kept for the adsorption tests and will be further designed as Ascophyllum nodosum 

waste (ANw) and Ulva Rigida waste (URw). 

 

Figure 6 - Bandelin Sonomex ultra-sound bath. 
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Total polyphenolic content (TPC) was determined using the Folin–Ciocalteu 

method, based on the colorimetric reaction of the sample with the Folin–Ciocalteu 

reagent. For all analyses 1 mL of extract was mixed with 0.5 mL Folin–Ciocalteu reagent, 

2 mL Na2CO3 (100 g L-1) and 5 mL of distilled water, and kept in dark at room temperature 

for 90 min. The analysis of the samples was done by an UV-VIS spectrophotometer (GBS 

Avanta), with the parameters presented in Table 4. TPC, expressed as mg gallic acid 

equivalents per grams of algae (mg GAE g-1), was calculated by the following equation 

(Lazar et al. 2016):  

         𝑇𝑃𝐶 (𝑚𝑔 𝐺𝐴𝐸 𝑔−1) =  
𝐶 ×𝑉

𝑀
                (3)  

where: 

C – Concentration of the reducing substances, obtained from the calibration curve 

present in attachments (mg L-1); 

V – Volume of solution brought to a pre-defined value after the extraction (L); 

M – Quantity of initial biomass used in the TPC analysis (g). 

Table 4 - Standard parameters for the analysis of the gallic acid concentration. 

Parameter Value 

Photometric mode Abs 

Working range 5 – 200 mg L-1 

Wavelength 765 nm 

Wavelength domain 190 - 800 nm 

 

3.2.4. FTIR spectra  
 

 In order to identify the predominant functional groups, present on the 

algae surface, FTIR analyses were performed in 4 samples: ANv and ANw before and 

after copper biosorption. These analyses were conducted using a Digilab SCIMITAR 

Series IR Spectrophotemeter, shown in Figure 7.  
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Figure 7 - Digilab SCIMITAR Series equipment. 

 

3.3. Biosorption studies 

3.3.1. Preliminary biosorption tests 
 

In order to decide which is the better algae residue to remove copper from 

contaminated waters, biosorption tests were conducted with ANw and URw for Cu(II). 

These biosorption tests were performed in 100 mL Erlenmeyer flasks containing 25 mL 

of 25 mg L-1 metal Cu solution, at pH 2 and 5, and 25 mg of ANw and URw accurately 

weighed. The samples were stirred in an GFL shaking incubator 3031 (Fig. 8) at 120 rpm, 

under room temperature (22ºC ± 1). pH was monitored regularly and if necessary 

readjusted using HNO3 and NaOH aqueous solutions, in order to maintain a constant 

value (±0.5).  

 



  

22 
 

An integrated use of Macroalgae as bioproducts source and biosorbent for environmental applications 

 

 

 

 

 

 

 

 

 

 

Figure 8 - GFL shaking incubator 3031 equipment. 

After a 4h contact time, the samples were centrifuged in an Hettich Rotofix 32 A 

at 4000 rpm for 15 min. The concentrations of Cu (II) in liquid phase were analysed by 

AAS. The amount of Cu(II) adsorbed (mg g-1) was calculated by a mass balance equation:  

𝑞 =
𝐶0 −  𝐶

𝐶𝑠
          (4) 

 

where C0 is the initial Cu concentration in the liquid phase (mg L-1), C is the concentration 

after adsorption (mg L-1) and Cs is the sorbent dosage (g L-1). 

 

3.3.2. pH effect tests 
 

 Based on the results of preliminary biosorption tests, the algae ANw was 

selected for further kinetics and equilibrium studies.  

 In order to found the optimum pH for the biosorption process, tests were 

performed using Ascophyllum nodosum virgin (ANv) and Ascophyllum nodosum waste 

(ANw) for Cu(II) uptake.  These biosorption tests were performed in 100 mL Erlenmeyer 

flasks containing 25 mL of 25 mg Cu L-1 solution, at pH 3, 4 and 5, and 25 mg of ANv and 

ANw accurately weighed. The samples were stirred at 120 rpm, under room 

temperature (22ºC ± 1). pH was monitored regularly and if necessary readjusted using 

HNO3 and NaOH aqueous solutions, in order to maintain a constant value (±0.5). 
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 After a 4h contact time, the samples were centrifuged (Hettich Rotofix 32 

A) at 4000 rpm for 15 min. Concentrations of Cu(II) in liquid phase were analysed by AAS 

and adsorbed amounts calculated by Equation (4). 

 

3.3.3. Biosorption kinetics studies 
 

 In order to discover the behaviour of the biosorption process along time 

and the time needed to reach the biosorption equilibrium, a kinetic study was made. 

This procedure was performed in 100 mL Erlenmeyer flasks containing 25 mL of 25 mg 

Cu(II) L-1 solution at pH 5, and 25 mg of ANv and ANw accurately weighed. During the 

time of the assay, samples from each flask were collected at different time stamps (5 

min; 10 min; 15 min; 30 min; 1 h; 3 h; 5 h). The samples were stirred at 120 rpm, under 

room temperature (22ºC ± 1). The pH was monitored regularly and if necessary 

readjusted using HNO3 and NaOH aqueous solutions, in order to maintain a constant 

value (±0.5). The amount of Cu(II) removed from the solutions by algal material was 

determined by calculating the difference between the initial metal concentration and 

the final metal concentration, measured by AAS and calculated with Equation (4). 

3.3.4. Biosorption isotherms studies 
 

 Experiments were performed in 100 mL Erlenmeyer flasks containing 50 mL 

of a 100 mg Cu L-1 solution at pH 5. This procedure was made in duplicate for both ANv 

and ANw, with crescent concentrations of alga: 0,5 g L-1; 1 g L-1; 2 g L-1; 3 g L-1. The 

samples were stirred at 120 rpm, under room temperature (22ºC ± 1). The pH was 

monitored regularly and if necessary readjusted using HNO3 and NaOH aqueous 

solutions, in order to maintain a constant value (±0.5). The quantity of Cu (II) adsorbed 

from the solutions by algal material was determined by calculating the difference 

between the metal concentration in solution before and after the biosorption process, 

measured by AAS and calculated with Equation (4). 
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3.3.5. Analytical procedure 

 
The analytical method used to determine the concentration of copper in aqueous 

solutions was Atomic Adsorption Spectrometry (AAS; spectrophotometer GBC Avanta) 

presented in Figure 9. Analyses were done using the technical parameters present in 

Table 5. 

 

 

 

 

 

 

 

 

 

 

Figure 9 - Flame atomic adsorption spectrometry, mod. GBC Avanta. 

 

Table 5 - Technical parameters of spectrophotometer GBC Avanta. 

Metal Flame type 
Lamp current 

(mA) 
Working range 

(mg L-1) 
Wavelength 

(nm) 
Slit Width 

(nm) 

Cu Air-Acetylene 3.0 0.12 – 30.0 217.9 0.20 
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4. Results and discussion 

4.1. Chemical characterization 

4.1.1. Moisture 
 

The determination of moisture, after the seaweeds were dried in the oven at 50º 

C for 24 hours, allows to quantify the content of water present in the two macroalgae 

studied. The algae U. rigida presents a higher moisture content (7.6 ± 0.4 %) than 

A.nodosum (4.9 ± 0.7 %). Both values are lower than 10 %, which represents a good 

amount of moisture for the determination of polysaccharides, once the excess moisture 

could interfere with appropriate acid (H2SO4) concentrations (Wychen and Laurens 

2013).  

4.1.2. Total ash 
 

Inorganic materials are present in algal biomass samples. In addition to 

contributing significantly to total mass closure, inorganic material may interfere with 

acid hydrolysis in the determination of total polysaccharides (Wychen and Laurens 

2013). The determination of total ash (inorganic residue obtained after calcination) was 

calculated by Eq.1 described in section 3.2.2. of this study. The algae A. nodosum 

presents a higher percentage of non-volatile matter (13.8 ± 0.1 %) than U.rigida (10.9 ± 

0.2 %), which is confirmed by Ross et al. (2008), that reported that brown seaweeds 

have in general, a higher ash content than other types of seaweeds. Yuan & Macquarrie 

(2015) and Blanco-Pascual et al. (2014) reported values of 18.6 % and 15.4 %, 

respectively, for the ashes in A. nodosum, which are higher than the obtained in this 

study. Regarding U. rigida, the ash content (10.9%) was lower than that reported of 

some seaweed species of the same genus, i.e. U. lactuca (19.6%) and U. armoricana 

(15.9%) (Yaich et al. 2011 and Hardouin et al. 2016). 
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4.1.3. Total polysaccharides 
 

 Polysaccharides are present in the cell wall of the three broad groups of 

macroalgae (Brown, Green and Red). The biosorption capacities of this seaweed are 

attributed mainly to their cell wall  and, therefore, to the presence of polysaccharides 

(He and Chen 2014). The determination of polysaccharides was calculated by Eq. 2 

present in section 3.2.3. The brown algae A. nodosum presented a lower percentage of 

polysaccharides (44.7 ± 1.2 %) than the green algae U.rigida (48.7 ± 0.1 %). These values 

are in agreement with ones found in the literature. Morrissey et al. (2001) reported for 

A. nodosum a range of total polysaccharides from 42 to 64 % and for U.rigida a range 

from 42 to 46 %, which is just a slightly lower for the green algae.  

 Another aspect that is important to mention in this sub-chapter is the percentage 

of sample that was hydrolysed. For A. nodosum, 62.2 ± 2.6 % of sample mass was 

hydrolysed, while for U. rigida it was 75.3 ± 1.1 %. These values were calculated based 

on the following equation: 

% ℎ𝑦𝑑𝑟𝑜𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠𝑒𝑠 =
𝑆𝑎𝑚𝑝𝑙𝑒 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠−𝑅𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑎𝑠𝑠 𝑎𝑓𝑡𝑒𝑟 ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠

𝑆𝑎𝑚𝑝𝑙𝑒 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠
 ×100      (5) 

 

4.1.4. Total Polyphenolic content 
 

The polyphenolic compounds have been suggested to possess several 

bioactivities including antioxidant, anti-inflammatory, anti-diabetic, anti-proliferative or 

antibacterial effects (Macías-Sánchez et al. 2009). 

The determination of the total polyphenolic content (TPC) was calculated by Eq.3 

present in section 3.2.4. The brown algae presented a higher value of TPC (0.95 mg GAE 

g-1) than the green algae (0.33 mg GAE g-1). These values are lower than the ones found 

in literature. Macías-Sánchez et al. (2009) reported that brown algae Sargassum 

muticum present a total polyphenolic content of 47.6 mg GAE g-1, when using ethanol 

and water as extracting solvent. Fabrowska et al. (2016) obtained a value of 2.7 mg GAE 

g-1 in green algae Ulva flexuosa, which is much higher than the value achieved for U. 

rigida in this study. These authors used as well ethanol and water as extracting solvent. 
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4.1.5. FTIR analysis 
  

FTIR spectra of ANv and ANw before and after copper biosorption is shown in 

Figure 10.  

Figure 10 - FTIR spectra of ANv and ANw before and after copper biosorption. 

A H-bonded stretch identified in the range of 3200-3600 cm-1 (1) with a strong, 

broad intensity of band indicates, for all spectrums, the presence of the O-H functional 

group of glucose and the N-H groups of proteins, constituents of the cell wall 

(Ungureanu et al., 2015). Based on the relative intensity of the band, ANv seems to have 

a higher amount of these groups than ANw, which indicates that the extraction of 

polyphenols reduced the hydroxyl stretches. 

The two peaks (2 and 3) observed between 2850-3200 cm-1 are assigned to C-H 

stretching of alkyl groups, asymmetrical and symmetrical, respectively (Silverstein et 

al.,1981; Freitas, 2007). For the band of 2900 cm-1 (2), it is possible to notice for both 

samples, that higher bands are obtained after contact with copper, suggesting that C-H 

stretch was involved in the copper biosorption. The same result was also observed by 

Sheng et al. (2004) for the Padina sp. and Sargassum sp. seaweeds. 

According to Onyancha et al. (2008), the band observed in the range 2400 cm-1 

is due to alkyl groups (-CC triple bond). These authors showed the presence of this 
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groups in the green seaweeds Spirogyra condensata and Rhizoclonium hieroglyphicum. 

Regarding the intensity of each sample, no significant differences were observed 

between samples, indicating that these functional groups weren’t affected by the 

extraction of polyphenols and weren’t involved in copper biosorption. 

Around the range 1700-1600 cm-1, it is visible the existence of two bands, a small 

one detected at about 1733 cm-1 (5) and other at 1626 cm-1 (6), which corresponds to 

the distension of C=O chelate and C=O stretching of the carboxyl groups (Silverstein et 

al., 1981; Freitas 2007). Comparing the intensity of the band at 1626 cm-1 (6), the ANv 

band after biosorption has a higher intensity, which also was confirmed by Freitas (2007) 

and indicates the involvement of the carboxyl group in copper biosorption. 

The C-O bond in the alcohol functional group is indicated for all spectrums by a 

stretching bond in the 1000-1100 cm-1 (7) range with a strong intensity. Freitas et al. 

(2009) reported that this band is due to the presence of carbohydrates in seaweeds. The 

intensity of this band increased in ANv after biosorption, indicating that this functional 

group is involved in copper biosorption. 

 Table 6 summarizes the identified functional groups. 

Table 6 - Dominants stretching frequencies in seaweeds FTIR spectra. 

  

 

 

 

 

Band Frequency (cm-1) Symbol of 

functional groups 

Name of functional 

groups 

1 3200-3600 O-H Hydroxyl 

2 2900 C-H Methyl 

3 2850 C-H Methyl 

4 2360 C-C Alkyl 

5 1733 C=O Carboxyl 

6 1626 C=O Carboxyl 

7 1000-1100 C-O Alcohol 
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4.3. Preliminary biosorption tests 
 

Preliminary biosorption tests were carried out in order to compare the 

performance of algae for Cu(II) biosorption after the extraction of polyphenols. 

Figure 11 represents the adsorbed quantity of Cu(II) from algae samples ANw 

and URw at pH 2 and 5. 

These preliminary tests show better results for Cu(II) biosorption at pH 5. 

Between the two macroalgae, the difference is insignificant and ANw was selected to 

further kinetics and equilibrium studies, due to the high quantity available, higher than 

URw.  

 

4.3.2. pH effect tests 
 

This section presents the results of Cu(II) biosorption for pH optimization. Figure 

12 shows the results of preliminary pH tests performed with A. nodosum virgin and A. 

nodosum waste for pH 3, 4 and 5. Higher pH values have not been tested due to Cu(II) 

precipitation as metal hydroxide. 
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Figure 11 - Adsorbed quantity of Cu (II) by ANw and URw using 25 mg L-1 metal solution, 10 g L-1 
algae dosage at pH 2 and 5. 
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Figure 12 - Adsorbed quantity of Cu (II) by ANv and ANw using 25 mg L-1 Cu solution, 10 g L-1 algae 
dosage and pH 3,4,5. 

Adsorbed Cu(II) amounts by ANv (Fig. 12) are within the range 2.13-2.25 mg g-1. 

ANw presents an adsorption capacity between 2.15-2.26 mg g-1. 

From figure 12, it is possible to conclude that there are no significant differences 

in adsorbed Cu(II) amounts by ANw for pH values 4 and 5. Thus, pH 5 was chosen for 

further kinetics and equilibrium studies, because it gives more stable pH values, showing 

insignificant fluctuations in the pH during the experiment, and also because the initial 

copper solution was at pH 5 and it was not necessary to correct the pH. Regarding pH 3 

and 4, it was observed that in the first 30 minutes of contact with seaweed the solution 

pH became more basic, requiring the addition of HNO3 to return to the initial values and 

diluting the solution. 

Freitas et al. (2009) showed that the best results for the biosorption of Cu (II) by 

A. nodosum were achieved at higher levels of pH (5.0) with a maximum uptake capacity 

of approximately 70 mg g-1, for an initial Cu(II) concentration of 150 mg L-1 and seaweed 

dosage of 1 g L-1.  The authors also concluded that the biosorption capacity decreases 

with pH. 

 Romera et al. (2007) reported that pH 4 was the optimum for the biosorption of 

Cu(II) by A. nodosum. At this pH value, the authors obtained an uptake capacity of 58.8 

mg g-1 with an initial Cu(II) concentration of 50 mg L-1 and biomass concentration of 0.5 

g L-1. 
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 In the study conducted by Freitas (2007) it was concluded that the maximum 

capacity of copper biosorption by A.nodosum was 69.3 mg g-1 at pH 5, at 25ºC, 150 mg 

L-1 initial Cu(II) concentration and a seaweed dosage of 1 g L-1. 

 In the present work lower adsorption capacities were obtained due to the low 

values of initial Cu(II) concentrations and the high biomass dosages. Freitas (2007) 

concluded that the biosorption is highly dependent of the initial metal concentration in 

solution and increases with the raise of initial metal concentration. The same author 

determined that the use of high quantities of biomass will affect negatively the 

biosorption. Due to the low values of adsorbate concentrations in solution and the high 

number of available active sites, adsorption occurs only on the higher affinity sites of 

the adsorbent reducing the amount of metal adsorbed by gram of biomass. 

4.4. Biosorption kinetics studies 
 

 The kinetics adsorption study allows the determination of the rate at which 

copper (II) ions are adsorbed onto the surface of the algae samples. This is one of the 

main aspects to be considered in the evaluation of the adsorption efficiency because 

low adsorption rates limit practical applications of the process. 

 In this study, pseudo 1st and pseudo 2nd order models were used to describe 

adsorption kinetics. The pseudo 1st order, or Lagergen model (1898), is represented by 

the following equation: 

𝑞 =  𝑞𝑒 (1 −  𝑒−𝑘1,𝑎𝑑𝑡)           (6) 

 where q (mg g-1) is the biosorption capacity for a determined contact time t 

(min), qe (mg g-1) is the biosorption capacity in equilibrium and k1,ad (min-1) is the kinetic 

constant. 

 The pseudo 2nd order model (Ho & McKay 1999), is given by: 

𝑞 =  
𝑘2,𝑎𝑑 𝑞𝑒

2 𝑡

1+ 𝑘2,𝑎𝑑 𝑞𝑒 𝑡
           (7) 

where k2,ad (g mg-1 min-1) is the second order kinetic constant. 

Pseudo 1st and pseudo 2nd order models were fitted to experimental kinetic data 

by non-linear regression using CurveExpert software. In Table 7, are presented the 

obtained parameters for the models. It was found that the models of pseudo 1st order 
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and pseudo 2nd order represent adequately the experimental results, with coefficients 

of determination values (R2) exceeding 0.95. Pseudo 1st order model presented the best 

determination coefficients (0.99), it predicted also qe values closer to the experimental 

ones.  

 
Table 7 - Parameters for kinetics models (value ± interval for 95% confidence). 

 Pseudo first order Pseudo second order 

Algae qe (mg g-1) k (min-1) SE qe (mg g-1) k (g mg-1 min-1) SE 

ANvirgin 2.4 ± 0.2 0.08 ± 0.02 0.11 2.6 ± 0.4 0.04 ± 0.04 0.22 

ANwaste 2.32 ± 0.08 0.10 ± 0.02 0.05 2.5 ± 0.3 0.06 ± 0.04 0.15 

 

 The parameters obtained in this kinetic study can be compared with some 

other reported in the literature, presented in Table 8 and 9. 

Table 8 - Pseudo first order model parameters others found in literature. 

Metal 

ion 
Biosorbent 

Dosage 

(g L-1) 

Initial metal 

concentration 

(mg L-1) 

pH 
qe  

(mg g-1) 

k  

(min-1) 
Reference 

Cu(II) 

A.nodosum 4 200 4.0 34.0 0.04 Freitas 

(2007) S.muticum 4 200 4.0 29.7 0.1 

Ulva 

fasciata 
3.3 100 5.0 5.13 0.37 

Kumar et al. 

(2006) 

Gelidium 2 102 5.3 17.3 0.31 
Vilar et al. 

(2008) 

Ni(II) 

A.nodosum 

4 200 4.0 25.8 0.07 
Freitas 

(2007) 
Cr(II) 4 200 4.0 26.1 0.09 

Pb(II) 4 200 4.0 49.4 0.09 
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Table 9 - Pseudo second order model parameters found in literature. 

Metal 

ion 
Biosorbent 

Dosage 

(g L-1) 

Initial metal 

concentration 

(mg L-1) 

pH 
qe 

(mg g-1) 

k  

(g mg-1 

min-1) 

Reference 

Cu(II) 

A.nodosum 4 200 4.0 34.2 0.001 
Freitas 

(2007) 

Sargassum 

sp. 
1 10 5.5 9.93 0.01 Karthikeya

n et al. 

(2007) 
Ulva 

fasciata 
1 10 5.5 9.81 0.01 

Cd(II) A.nodosum 
2.5 250 

4.8

-

5.6 

71.9 0.005 
Lodeiro et 

al. (2005) 

4 200 4.0 35.9 0.002 Freitas 

(2007) Zn (II) A.nodosum 4 200 4.0 24.6 0.003 

 

 From tables 8 and 9, it is possible to conclude that the values of k, for both 

models studied, are similar to those obtained in this study. The major difference is 

related to the biosorption capacity and to the biomass dosage, whose explanation has 

already been given in the previous sub-chapter. 

 After the application of these models, figures 13 and 14 present the 

experimental results obtained from this kinetic study of Cu(II) biosorption by ANv and 

ANw.  
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Figure 13 - Kinetics for Cu(II) biosorption on ANv at pH 5 (initial concentration: 25 mg L-1 Cu solution; 10 g 
L-1 alga dosage): experimental data and modelling. 

 

 

Figure 14 - Kinetics for Cu(II) biosorption on ANw at pH 5 (initial concentration: 25 mg L-1 Cu solution; 10 
g L-1 alga dosage): experimental data and modelling. 

  

From figures 13 and 14 it is possible to infer that the kinetics curves of both algae 

are almost identical and can be divided in two phases, a first very fast phase (0 – 30 

minutes) and a second stable phase (30 – 300 minutes). For both algae, the equilibrium 

time is about 30 minutes since there were no further considerable changes on the 

adsorbed amount of Cu (II). It is possible also to deduce that more than 50% of the 
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adsorption equilibrium capacity is occupied in the first 15 minutes, corresponding to the 

bounding of the adsorbate on the higher affinity sites. 

 This equilibrium times are in agreement with values reported in the literature. 

 Vilar et al. (2008) reported that the biosorption of Cu(II) by red algae Gelidium 

waste (from agar extraction industry) mainly occurs within the first 10 minutes, the 

removal of Cu(II) ions is faster at the initial stage and gradually decreases with time until 

saturation. These authors used an initial Cu(II) concentration of 98 mg L-1 and a 

macroalgae dosage of 2 g L-1. 

 Karthikeyan et al. (2007) observed that brown algae Sargassum sp. (1 g L-1) 

removed a significant proportion of the total soluble copper (>50%) from solutions 

within 30 min of agitation, with initial Cu(II) concentration equal to 10 mg L-1. 

Kumar et al. (2006), testified that about 0.1 g L-1 of green algae Ulva fasciata sp. 

was found to be enough to remove 95% of 20 mg/L copper(II) in 20 min.  

 

4.4.1. Statistical comparison of the models 
 

F-test, a statistical tool, was used to evaluate the accuracy of the kinetic models 

used in this study and in order to deduce if the difference between the two is statistically 

significant. The test is based on the comparison of the variances ratio of the models, 

(Fcalc) with a critical value (Fc (0.05)), tabulated for a confidence level of 95% and 

for the system degrees of freedom (ν). If Fcalc > Fc (0.05), the model in denominator is 

statistically better for the confidence level of 95 %. If Fcalc  < Fc (0.05), there is no statistical 

difference between the models (Miller and Miller 2010).  Fcalc was calculated by equation 

8. The pseudo first order model was placed in denominator because it has a lower value 

of s2, with a purpose in obtaining a Fcalc ≥ 1.  

                𝐹𝑐𝑎𝑙𝑐 =  
𝑠2º

2

𝑠1º
2            (8) 

Table 10 - Comparison of kinetic models (Pseudo first and second order) by F-test (confidence level 95%). 

Algae 𝒔𝟏º
𝟐  𝒔𝟐º

𝟐  Fcalc ν Fc (0.05) Better model 

ANvirgin 0.82 1.11 1.35 6 4.28 Pseudo first or second 

ANwaste 0.53 0.73 1.36 6 4.28 Pseudo first or second 
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 Table 10 shows that the difference in adjustment by the two kinetic models 

studied is not statistically significant, due to the confirmation of Fcalc < Fc (0.05). 

4.5. Biosorption equilibrium studies 
 

Equilibrium data were modelled using an isotherm model, the Langmuir model. 

This model is one of the most widely used models to describe the equilibrium 

relationship between the adsorbed metal concentration, qe (mg L-1) and metal 

concentration in solution Ce (mg L-1). The Langmuir isotherm relationship is given by the 

following equation (Langmuir 1918):  

𝑞𝑒 =  
𝐾𝐿 𝑞𝐿 𝐶𝑒

1 +  𝐾𝐿 𝐶𝑒
      (9) 

 where qe (mg g-1) is the equilibrium concentration of solute in the solid phase, Ce 

(mg L-1) is the equilibrium concentration of solute in the liquid phase, qL(mg g-1) is the 

maximum biosorption capacity and KL (mg L-1) Langmuir constant. 

The model fitting to experimental data was performed by non-linear regression 

using CurveExpert software.  

Figure 15 present the experimental results obtained from equilibrium studies of 

Cu(II) biosorption by ANv and ANw.  

 

 

 

 

 

 

 

 

 

Figure 15 -Equilibrium isotherm for Cu (II) biosorption on ANv and ANw at pH 5 (initial concentration: 
100 mg L-1 Cu solution; 0.5,1,2,3 g L-1 alga dosage): experimental data and modelling  
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Table 11 - Parameters from the equilibrium model fitting Langmuir (value ± interval for 95% confidence). 

Algae Qmax (mg g-1) KL (L mg-1) SE 

ANvirgin 138 ± 122 0.03 ± 0.04 19 

ANwaste 102 ± 46 0.04 ± 0.05 19 

 

Due to the low number of experimental points produced, saturation of the 

adsorbent surfaces was not attained and high variances were obtained for models 

adjustments, as observed in Table 11. Although the high uncertainty of Langmuir 

parameters, maximum adsorption capacities around 100 mg g-1 were predicted for both 

algae, which are in accordance with published values for Cu(II) biosorption on different 

types of biomass (Table 2). 
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5. Conclusions and future work suggestions 
5.1. General conclusions 
 

Large quantities of algae waste are generated and disposed every year. The 

reusability of this biomass is a very promising subject, with economic benefits since the 

waste material is cheaper than other commercially available biosorbents. In this work 

the waste of algae after the extraction of polyphenols was tested as low cost biosorbent 

to remove Cu(II) from aqueous solutions.  

The chemical characterization of the seaweeds showed that the brown algae 

presented a higher percentage of ashes (13.8 ± 0.1 %) than the green one (10.9 ± 0.2 %). 

The opposite fact was obtained regarding the percentage of polysaccharides, where 

U.rigida presented a higher percentage (48.7 ± 0.1 %) than A.nodosum (44.7 ± 1.2 %). 

Concerning the total polyphenolic content, A.nodosum presented a higher value (0.95 

mg GAE g-1) than U.rigida (0.33 mg GAE g-1). 

From FTIR analyses, it was concluded that the main functional groups that play a 

key role in Cu(II) biosorption are: C=O of carboxyl and C-O of alcohol functional group 

and that the extraction of polyphenols reduced the hydroxyl stretches. 

The pH effect tests revealed that A.nodosum virgin is the best adsorbent at pH 

values of 4 and 5. The adsorbed amount values weren’t so significantly higher than the 

ones obtained by A.nodosum waste and, therefore, due to the economic factor, the 

algae waste should be more in consideration. 

Pseudo first-order and pseudo second-order kinetic models were well fitted to 

experimental data. However, the results of the biosorption capacity were quite lower 

than other reported in literature, which led to the conclusion that the biosorbent dosage 

and initial metal concentration weren’t the most suitable values. 

 Equilibrium biosorption results suggest that surfaces saturation was not reached, 

for the experimental conditions used. Although Langmuir isotherm model adjustments 

gave high uncertainty parameters, predicted maximum adsorption capacity values close 

to those presented in the literature for Cu(II) biosorption by different types of biomass. 
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5.2. Future work suggestions 
  

 Some suggestions for further work on this subject would be: 

 Assays for the optimization of the biosorbent dosage and the initial metal 

concentration; 

 Testing biosorbent performance after the extraction of polysaccharides; 

 Detailed biosorption studies for different temperatures; 

 Use the same biosorbents to remove other metals; 

 More detailed study about the biosorption mechanism; 

 Performing kinetic and equilibrium studies in real effluents. 
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7. Attachments 

7.1. Other works performed 
 

 Preliminary biosorption tests were carried out also for Selenium, in order to infer 

if the two seaweed studied, after the extraction of polyphenols (ANw and URw), could 

remove Se(VI) from contaminated waters. 

 These biosorption tests were performed in 100 mL Erlenmeyer flasks containing 

25 mL of 25 mg L-1 metal Se solution, at pH 2 and 5, and 25 mg of ANw and URw 

accurately weighed. The samples were stirred in an GFL shaking incubator 3031 (Fig. 8) 

at 120 rpm, under room temperature (22ºC ± 1). pH was monitored regularly and if 

necessary readjusted using HNO3 and NaOH aqueous solutions, to maintain a constant 

value (±0.5). 

 Figure A.1 represents the adsorbed quantity of Se (VI) for algae samples ANw and 

URw at pH 2 and 5. 

 

From Figure A.1 it is possible to realize that the results were unsatisfactory, but 

to confirm that URw at pH 2 could adsorbed some quantity of Se(VI), a kinetic assay was 

made. In this kinetic study, it was observed that URw couldn’t adsorbed Se (VI) with 

following parameters: pH 2, 25 mg L-1 of initial Se(VI) concentration and 10 g L-1 of algae 

dosage. 
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Figure A.1 - Adsorbed quantity of Se (VI) by ANw and URw using 25 mg L-1 metal solution, 10 g L-1 
algae dosage at pH 2 and 5. 
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7.2. Calibration lines 
  

 Glucose reading 
 

Figure A.2 presents the calibration curve for glucose measurements by 

UV-vis spectrophotometry, following the procedure described on Ghose (1987). 

 

Figure A.2 – Calibration line for Glucose reading. 

Table A.1 presents validation parameters for the analytical method of 

polysaccharides measurement.  

Table A.1 – Evaluation the quality of the calibration line for Glucose reading. 

Standard deviation relative 
of the slope 

Sa/a 1.8% (<5%) 

Confidence interval 
b+sb 0.05 

b-sb -0.006 

Correlation coefficient 
R 0.9995 (>0.995) 

R2 0.999 
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 Gallic acid reading 

Figure A.3 presents the calibration curve for gallic acid measurements by UV-vis 

spectrophotometry, following the procedure described on Lazar et al. (2016). 

 

Figure A.3 – Calibration line for gallic acid reading. 

Table A.2 presents validation parameters for the analytical method of polyphenols 

measurement.  

Table A.2 – Evaluation the quality of the calibration line for gallic acid reading. 

Standard deviation relative 
of the slope 

Sa/a 1.8% (<5%) 

Confidence interval 
b+sb 0.03 

b-sb -0.0007 

Correlation coefficient 
R 0.9992 (>0.995) 

R2 0.998 
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 Copper reading 

 

Figure A.4 presents the calibration curve for copper measurements by Atomic 

Adsorption Spectrophotometer. 

 

Figure A.4 – Calibration line for Copper reading. 

Table A.3 presents validation parameters for the analytical method of copper 

measurements in aqueous solutions. 

Table A.3 – Evaluation the quality of the calibration line for Copper reading. 

Standard deviation relative 
of the slope 

Sa/a 3.6% (<5%) 

Confidence interval 
b+sb 0.04 

b-sb -0.008 

Correlation coefficient 
R 0.998 (>0.995) 

R2 0.996 
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 Selenium reading 

Figure A.5 presents the calibration curve for selenium measurements by Atomic 

Adsorption Spectrophotometer. 

 

Figure A.5 – Calibration line for Selenium reading. 

Table A.4 presents validation parameters for the analytical method of selenium 

measurements in aqueous solutions.  

Table A.4 – Evaluation the quality of the calibration line for Selenium reading. 

Standard deviation relative 
of the slope 

Sa/a 0.9 % (<5%) 

Confidence interval 
b+sb 0.005 

b-sb 0.001 

Correlation coeficient 
R 0.999 (>0.995) 

R2 0.999 
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