

Kjetill Østgaard, 25.09.2012

Workshop –Seaweed for Biofuel

Contents:

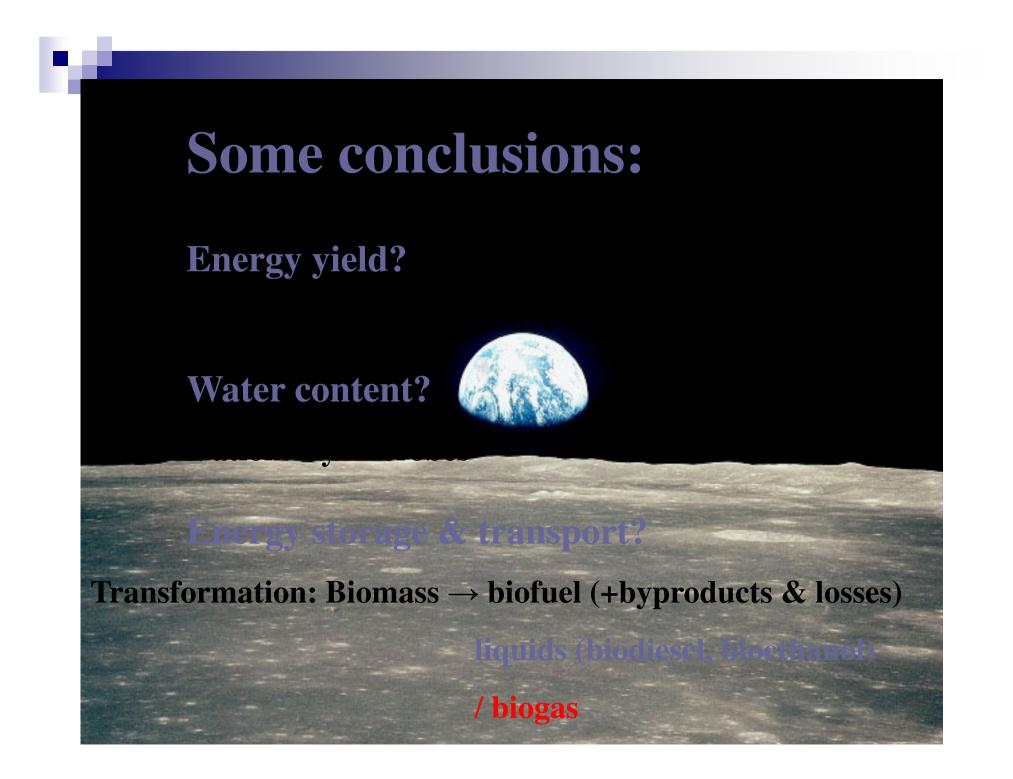
Basics of bio-energy & -gas

- 1. Intro; bioenergy? politics? ecomomy?
- **2.** Biogas basics
- 3. Once upon a time
- 4. Process operation Case seaweeds
- 5. Seaweeds?
- 6. The HRAD concept
- 7. Biogas for transport; LBG & CBG
- 8. Concluding remarks

1a Intro: Bioenergy?

"In the beginning was the redox reaction"

Primary production: CO_2 + energy \rightarrow biomass Bioenergy (def.): Biomass \rightarrow CO₂ + energy

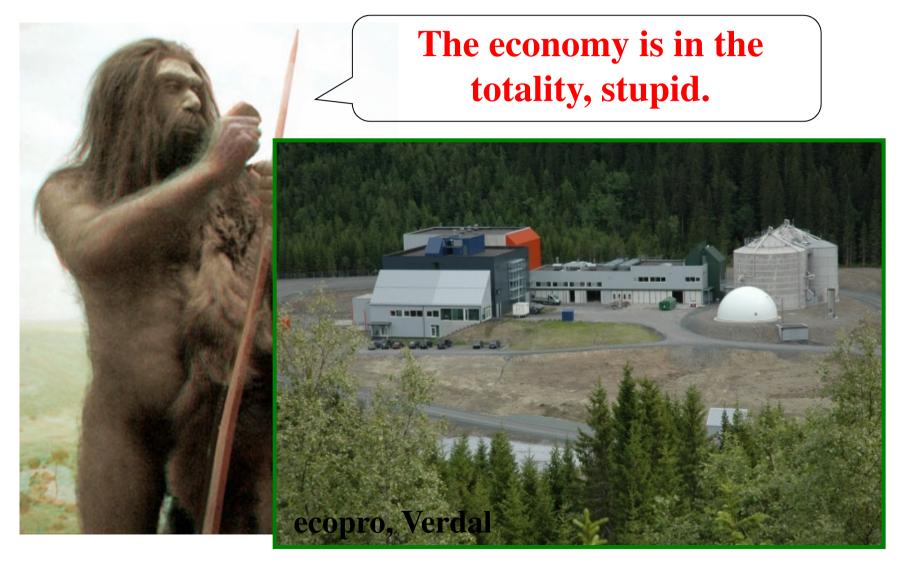

COD?

1: Def.: COD is the amount of oxygen needed to oxidize some organic compound completely to CO_2 .

2: Measure: Oxidize with potassium dichromate, yellow "In the beginning was the redox reaction"

3: Calculate: Balance reaction eq. to find moles O, needed.

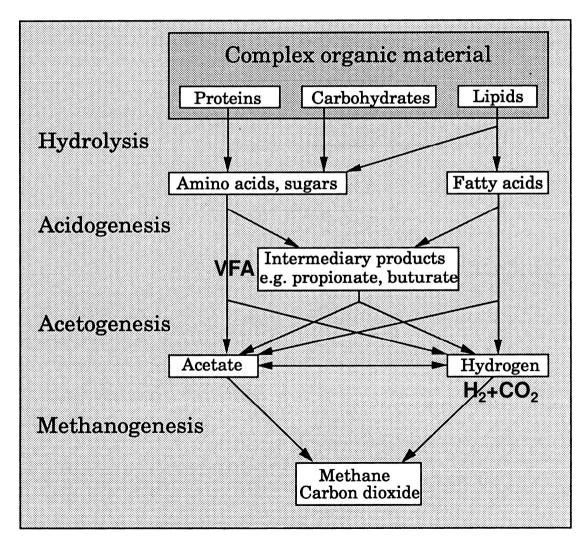
4: Estimate: Use average composition; ex. biomass $C_5H_7O_2N$. 5: COD Balance: COD_{substr.} + COD_{oxygen} = COD_{biomass} + COD_{prod.} (with by def. COD_{oxygen} / Weight_{oxygen} = -1) Bioenergy (def.): Biomass \rightarrow CO₂ + energy



1b Intro: Politics?

The Swedish Jeser in

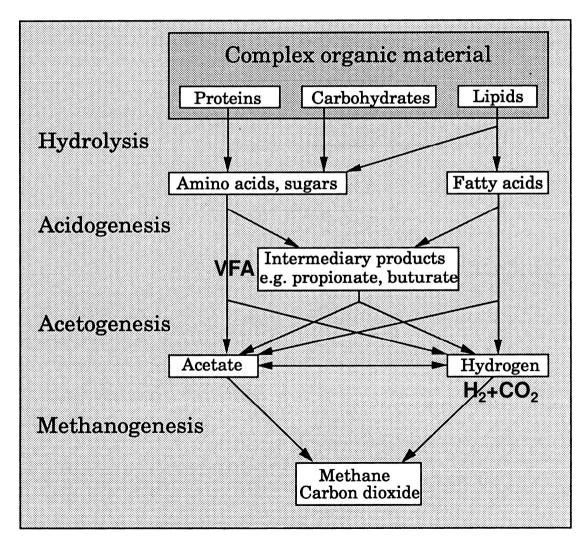
- 1. There is no energy source without negative environmental impact.
- 2. The major energy source of the future will be: Stop wasting. Corresponding strategy: Diversify!
- 3. The key to successful economic developent is disconneting growth from energy demand.


1c Intro: Economy?

2. Total process

Acidogenesis VFA Acetogenesis H_2+CO_2 Methanogenesis CH_4/CO_2 $\approx 50\%/50\%$

Hydrolysis


Volatile fatty acids VFA:

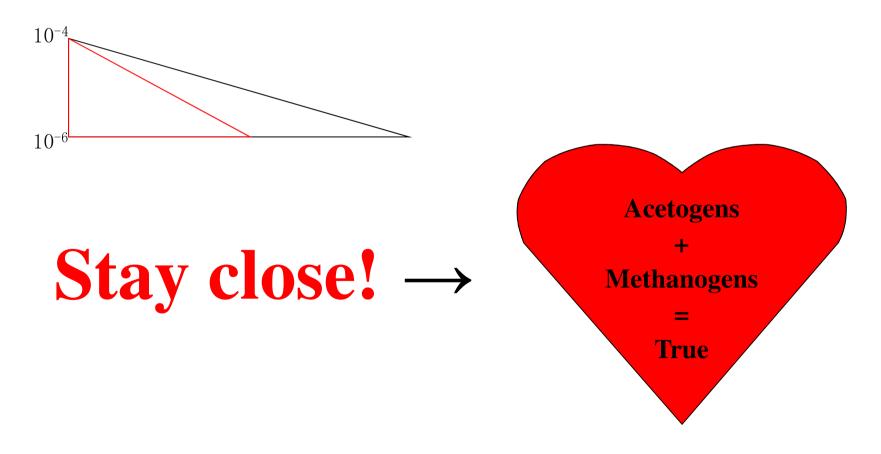
H-COOH	formic acid	
CH ₃ -COOH	acetic "	
CH ₃ -CH ₂ -COOH	propionic	
CH ₃ -CH ₂ -CH ₂ -COOH	butyric	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -COOH	valeric	
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -COOH	kaproic	etc.
	1	
-		
-		
сн ₃ -Снон-соон - - СН ₃ -Он	lactic acid	a.o

2. Total process

Acidogenesis VFA Acetogenesis H_2+CO_2 Methanogenesis CH_4/CO_2 $\approx 50\%/50\%$

Hydrolysis

VFA acetogenesis:

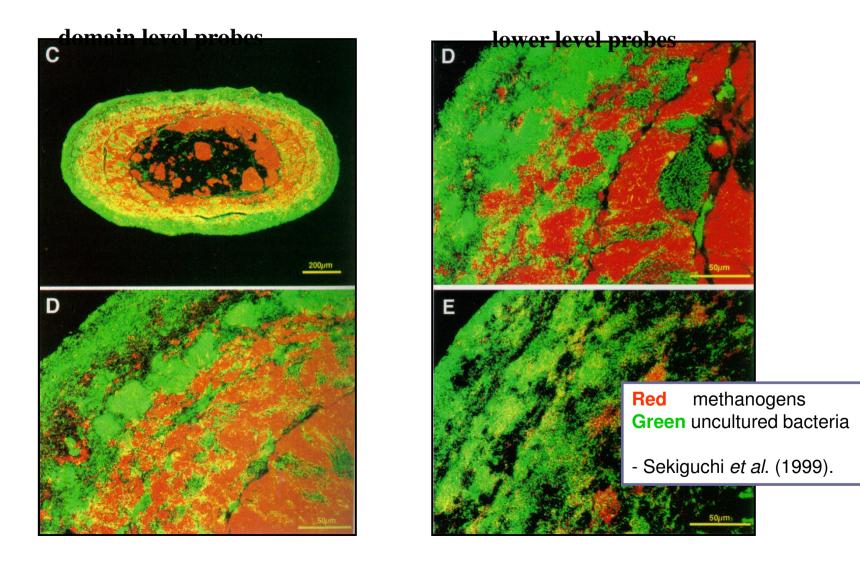

Case ethanol:

1. S-organism: 2 $C_2H_5OH + 2 H_2O \rightarrow 2 CH_3COOH + 4 H_2 \Delta G^{0} = +9.7 kJ$ $\Delta G' < 0 \text{ at } P_{H2} < 10^{-4} \text{ atm}$ 2. Methanobacterium bryantii: 4 $H_2 + CO_2 \rightarrow CH_4 + 2 H_2O$ $\Delta G^{0} = -131 kJ$

 $\Delta G' < 0$ at $P_{H2} > 10^{-6}$ atm

H₂ flux depends on gradient:

Interspecies hydrogen transfer


 $= 4.9 \cdot 10^{-5} \text{ cm}^2 \cdot \text{sec}^{-1}$ H2 H2 bocterium forming Stay close: $\rightarrow \rightarrow$ A = Surface area of H2 bocterium forming bacterium $= 4 \pi r^2$ CĮ = Concentration of H2 C2 in water = Syntrophic = Distance between H₂-forming and $J_{H_2} = -A \cdot D \cdot \frac{c_2 - c_1}{d} \text{ mol·sec}^{-1}$ H₂ - consuming bacteria consortia!

Clustering will also promote granule formation, c.f. UASB.

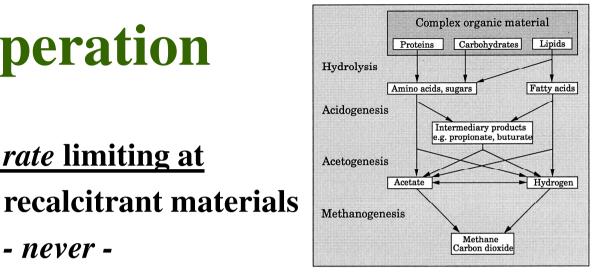
10 ⁹ celis/ml	10 ⁹ cells/ml	
equal distribution	clusier formation	
0 • 0 • • 0 • 0 • 0 • 0 • 0 •	\$Þ \$	
d = 8 سر r = سر ا c ₁ = 0.020 Mر c ₂ = 0.005	d = 0.00 µm r = 1 µm c ₁ = 0.05 µM c ₂ = 0.005 µM	
$J_{H_2} = \frac{10 \text{ nmol } H_2}{\text{min} \cdot \text{ml}}$	J _{H2} = 1000 nmol H ₂ min · ml	

 $D_{25^{\circ}C} = Diffusion constant for H_2$

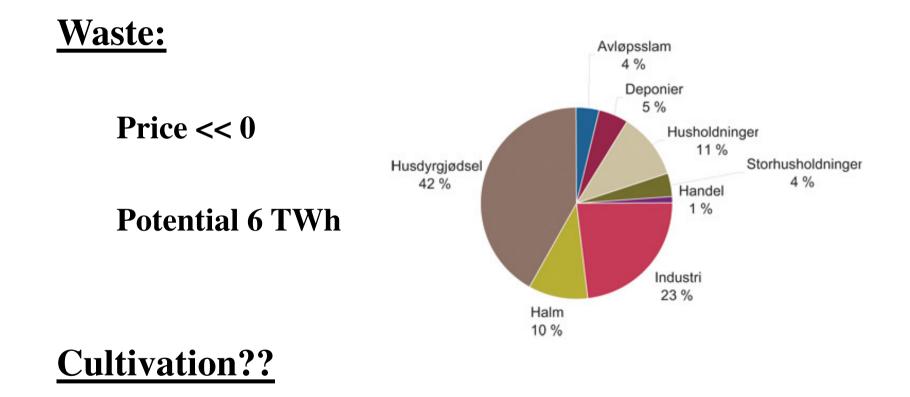
Granule structure by FISH

4. Process operation

rate limiting at **Process**


1 Hydrolysis

- 2 Acidogenesis
- **3** Acetogenesis overload; "surgjæring" \rightarrow low pH
- 4 Methanogenesis short sludge age; low μ^{max}


- never -

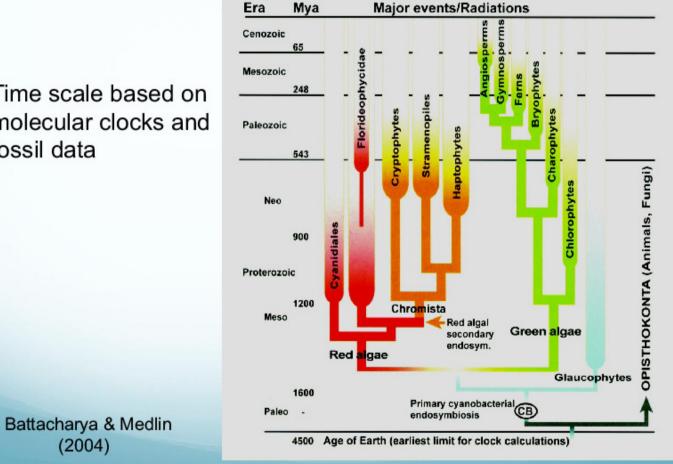
Conclusion: Stabilize at steady state!

Local cases: Go see Ladehammeren or Høvringen ww treatment plants, or Heggstadmoen landfill

Biogas resources of Norway

Price ??

5. Seaweeds?


Red

Green

Time scale based on molecular clocks and fossil data

(2004)

Brown

Evolutionary lineages of algal groups

Jan Rueness 2012

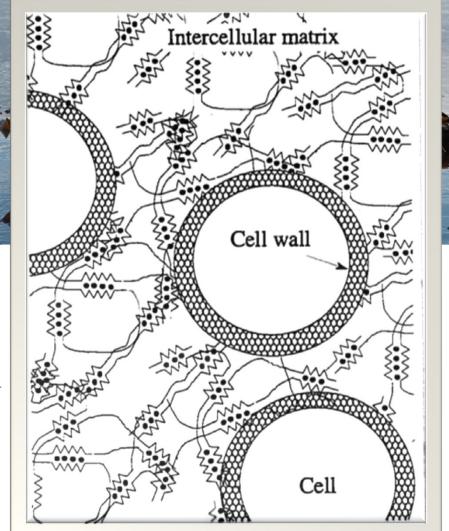
5. Seaweeds?


	Brown algae	Red algae	Green algae
pigments	chlorophyll a + c fucoxanthin o.a. carotenoids	chlorophyll a phycobilines div. carotenoids	chlorphyll a + b div. carotenoids
storage carbohydrates	laminaran (β-1,3 glucan) mannitol	floridéan starch (α-1,4 glucan) floridosid	starch (α-1,4 glucan)
structural polysaccharides	alginate fucoidan (cellulose)	galactanes (agar, carrageenan) (cellulose)	cellulose mannose ulvan
morphology size	no unicellular to 50 m	few unicellular to 1 m	many unicellular to 1 m
flagella	heterokont	absent	isokont
bioactive compounds	phlorotannines (polyphenols)	halogenated org. compounds	few known (Caulerpales, Ulvales)
number of	1800	6000	9000
species (% marine)	(99 %)	(90%)	(10 %)

Jan Rueness 2012

Physical structure

Chemical composition


Alginate
Laminaran
Mannitol
Others: Fucoidan
Protein
Cellulose
Polyphenols («tannins»)

Physical structure

Particle size by grinding / milling

Gel matrix dissociation by osmotic shock & Na⁺ / Ca⁺⁺ competition EGTA treatment Acid hydrolysis etc.; ORD

Fermentation of *Ascophyllum nodosum* :

Polyphenol content limited alginate lyase activity manniton consumption methane production

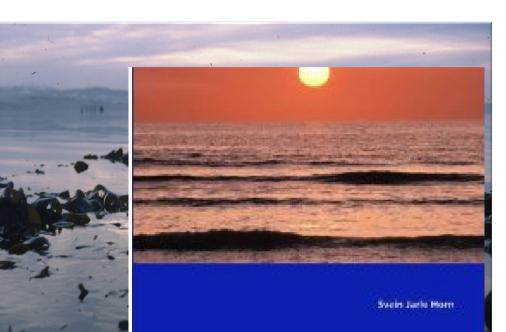
Degradation stimulated by fixation of polyphenols by formaldehyde etc.

Fermentation of *Laminaria hyperborea* stipe

Polyphenols of peripheral tissi gave extended lag phase due to polyphenols compared to core

Crosslinking by polyphenols or Ca-guluronate residues apparently limited yield in batch systems

Fermentation of Laminaria hyperborea from the formet of t


Diauxic pattern in batch («dessert first»)

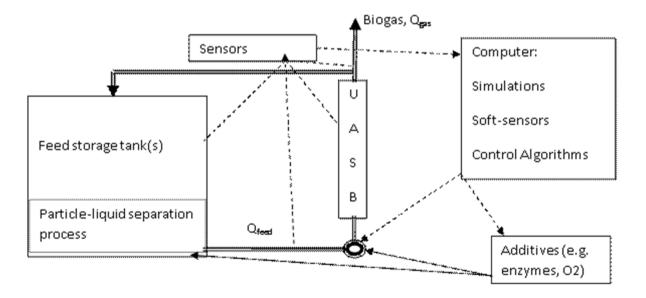
Successful methane production in continuous reactor systems

Fermentation of *Laminaria digitata*:

Easily degradable; low in polyphenols, low in high G alginate

Fermentation of *Saccharina latissima*?

Seaweed Biofuels

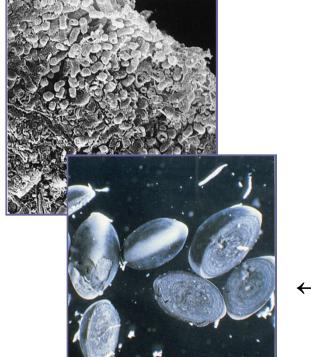

Production of Biogas and Bioethanol from Brown Macroalgae

VDM Verlag Dr. Müller 2009

6. The HRAD concept

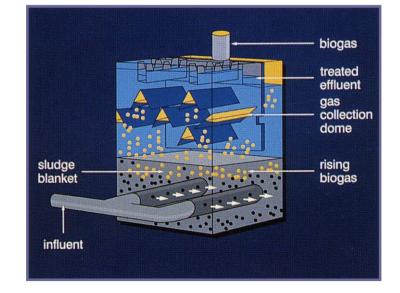
High Rate Anaerobic Digestion

Compact: In need of retention to keep biocatalyst stuck at high throughput flow = low HRT

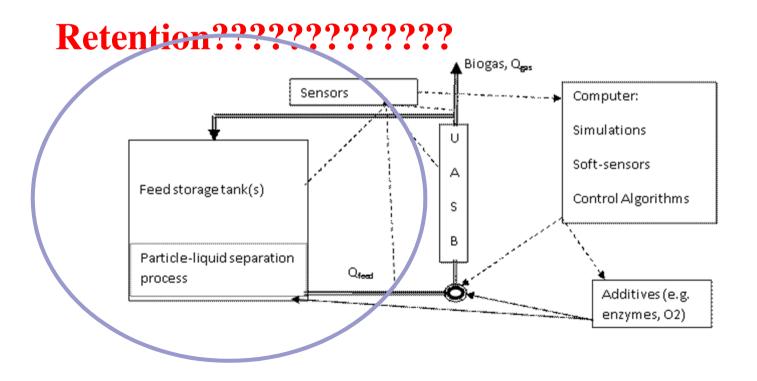


C.f. BIONA project

UASB


Developed by Lettinga, Wageningen. Note sludge separation zone on top.

 $Biopaq \rightarrow$


 $\leftarrow Granules$

Hydrolysis

in recycled pretreatment:

- washout of VFAs to avoid product inhibition

7. Biogas for transport

Biofuels:

- Biodiesel $\sim C_8 H_6 O_2 \sim$ vegetable oils and lipids< B20 in standard diesel engines
- **Bioethanol** C₂H₅OH by fermentation & destillation E20 USA, E85 Sweden up to E98 Brazil

Biogas CH₄ (+ CO₂) by fermentation. Purified, compressed CLG or liquified LBG (-163 °C) standard combustion / 80 % in dual diesel

LBG

-163°C

Lidköping Biogas

- opened summer 2012

60 GWh – corresponding to: 6 000 cars doing 17 000 km /year 16 000 ton CO₂ reduction / year

Mittnorden visar världen den gröna vägen

8. Concluding remarks

- **1.** Any industry generating organic waste has to consider local biogas production as a part of waste management.
- 2. This is also true for any seaweed based industry producing alginate, fertilizer, bioethanol or other products.
- **3.** Thus; biogas will in any case be a major or minor product in any significant uilization of brown seaweed biomass.
- **4.** Any cultivation for bioenergy has to compete with wastes priced at << 0 as raw materials. This is absolutely possible.
- 5. LBG is rapidly becoming a significant liquid fuel for the transport sector. Accordingly, LNG will follow.
- 6. A more direct price competition will thus be established between LBG/LNG and conventional liquid fuels.

8. Concluding remarks c.t.d.