Hydrothermal Liquefaction of Macroalgae Enteromorpha prolifera to Bio-oil

Abstract: 

Marine macroalgae Enteromorpha prolifera, one of the main algae genera for green tide, was converted to bio-oil by hydrothermal liquefaction in a batch reactor at temperatures of 220−320 °C. The liquefaction products were separated into a dichloromethane-soluble fraction (bio-oil), water-soluble fraction, solid residue, and gaseous fraction. Effects of the temperature, reaction time, and Na2CO3 catalyst on the yields of liquefaction products were investigated. A moderate temperature of 300 °C with 5 wt % Na2CO3 and reaction time of 30 min led to the highest bio-oil yield of 23.0 wt %. The raw algae and liquefaction products were analyzed using elemental analysis, Fourier transform infrared (FTIR) spectroscopy, gas chromatography−mass spectrometry (GC−MS), and 1H nuclear magnetic resonance (NMR). The higher heating values (HHVs) of bio-oils obtained at 300 °C were around 28−30 MJ/kg. The bio-oil was a complex mixture of ketones, aldehydes, phenols, alkenes, fatty acids, esters, aromatics, and nitrogen-containing heterocyclic compounds. Acetic acid was the main component of the water-soluble products. The results might be helpful to find a possible strategy for use of byproducts of green tide as feedstock for bio-oil production, which should be beneficial for environmental protection and renewable energy development.

Author(s): 
Jian-Min Chen
Hongbo Fu
Shicheng Zhang
Liang Zhang
Dong Zhou
Article Source: 
Energy & Fuels 24(7)
Category: 
Aquaculture methods
Economics
Uses of Seaweeds: Fuel or Energy