Most seaweed species that function as biofilters for finfish aquaculture have little market value, so produced biomass remains a by-product of biofiltration. This low value makes operation of these units economically difficult and is probably the key to today’s lack of industrial application of an otherwise highly feasible biofiltration method.
The main goal of a seaweed biofilter design should be the production of marketable biomass, which would then turn aquaculture effluent from a nuisance into a resource, and its biofiltration into a positive side effect.
Members of the marine plant ecology research group of the Center for Marine Sciences at the University of Algarve in Portugal have successfully established a commercially diverse seaweed biofilter using the tetrasporophyte of the red seaweed Asparagopsis armata. The plant is also referred to as Falkenbergia rufolanosa.
F. rufolanosa produces high levels of biologically active secondary metabolites. Among these compounds are natural antibiotic, antifungal, and anti-viral substances that are marketable for a wide range of applications in the fields of antifouling, cosmetics, and medicine.