Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides

Abstract: 

Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand–receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions.

Author(s): 
Ruiyan Zhang
Gabriele Loers
Melitta Schachner
Rolf Boelens
Hans Wienk
Simone Siebert
Thomas Eckert
Stefan Kraan
Miguel A. Rojas-Macias
Thomas Lutteke
Sebastian P. Galuska
Axel Scheidig
Athanasios K. Petridis
Songping Liang
Martin Billeter
Roland Schauer
Jurgen Steinmeyer
Jens-Michael Schrçder
Hans-Christian Siebert
Article Source: 
ChemMedChem 2016, 11, 1 – 14
Category: 
Basic Biology
Seaweed composition