The water-quality characteristics of a new system for the integrated culture of fish ( Sparus aurata L.) and seaweed ( Ulva lactuca L.) were examined. Seawater was recirculated between intensive fishponds and seaweed ponds. The seaweed removed most of the ammonia excreted by the fish and oxygenated the water. A model consisting of several tanks and a pilot consisting of two 100-m 3 , 100-m 2 ponds were studied. In both, the metabolically dependent water-quality parameters (dissolved oxygen, NH 4 + -N, oxidized-N, pH and phosphate) remained stable and within safe limits for the fish during over 2 years of operation. The design allowed significant increases in overall water residence time (4.9 days), compared with conventional intensive ponds, and produced a high yield of seaweed in addition to the fish. The design provides a practical solution to major management and environmental problems of land-based mariculture