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A B S T R A C T

Species of the green macroalgae genus Ulva often exhibit rapid growth, are generally cosmopolitan, and are rich
in amino acids, vitamins, proteins, and minerals and have high potential for commercial uses. Ulva aquaculture
was established and experimentally integrated into fish and shrimp farming in Brazil as Integrated Multi-Trophic
Aquaculture projects. Decreases in fish farm production are often due to deaths caused by stress – with con-
sequent increases in production costs. Essential amino acids, such as tryptophan and phenylalanine, have been
used in fish farms as anxiolytic agents. In that context, a bibliographic survey was carried out to investigate
advances during the last 17 years in the use of tryptophan and phenylalanine produced by Ulva species in fish
farming. The biosynthesis patterns of tryptophan and phenylalanine were also examined in the research data.
References to the presence of tryptophan and phenylalanine in Ulva spp. were encountered in 32 articles, with
Ulva lactuca being the species most cited. References to the use of essential amino acids as anxiolytics in fish
farming were encountered in 23 articles, with tryptophan being the most cited; none of the articles, however,
mentioned the use of Ulva spp. as sources of anxiolytics. Temperature and pH were the factors that most in-
fluenced phenylalanine production. In conclusion, there is a potential role for the use of selected species of Ulva
in fish farming as sources of tryptophan and phenylalanine for anxiolytic purposes.

1. Introduction

As human populations increase, concerns related to food security
have also increased. Aquaculture is viewed as one of the best means to
meet those needs (Godfray et al., 2010; FAO, 2018). In 2016, mar-
iculture and coastal aquaculture produced 28.7 million tons (US$67.4
billion) of food (FAO, 2018). The mortality of farmed fish is frequently
caused by stress related to management activities such as transport,
biometric determinations, pathological analyses, hormonal implants,
and reproduction induction (Barton, 2000; Hseu et al., 2003; Martins
et al., 2013; Wolkers et al., 2014; Zaminhan et al., 2017). To minimize
that problem, essential amino acids (EAA) such as phenylalanine (Phe)
and tryptophan (Trp) have been examined for their anxiolytic activities
(Herrero et al., 2007; Li et al., 2009; Martins et al., 2013; Zaminhan
et al., 2017).

As Phe and Trp and other EAA are found in the green seaweed Ulva,

the species of that genus could improve fish health (Madibana et al.,
2017) and production, although the results will vary according to the
Ulva species used and local abiotic factors (Angell et al., 2015).

In order to determine the potential value of Ulva as an anxiolytic in
fish farming, as well as the abiotic factors that can improve their EAA
production, we describe in this review the current state of knowledge
(as presented in published scientific articles) of the use of Trp and Phe
in fish farming, the presence of those EAA in Ulva spp., their protein
contents, as well as the Phe synthesis patterns of Ulva spp. according to
their geographic locations (latitude and longitude), considering en-
vironmental data obtained from the BioOracle data set.

A bibliographic survey was carried out using the following data
bases: Periodical of CAPES/MEC (2000-2018), Web of Science (2000-
2018), Science direct (2000-2018), Scifinder (2000-2018), and Google
Scholar (2000-2018). Articles from January 2000 to April 2018 were
searched using the key-words: amino acids Ulva fish-farming; amino
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acids Enteromorpha fish-farming; phenylalanine Ulva; phenylalanine
Enteromorpha; tryptophan Ulva; tryptophan Enteromorpha; phenylala-
nine fish-farming; tryptophan fish-farming; phenylalanine pisciculture;
and tryptophan pisciculture. The results obtained from the literature
are presented here in tables containing the following information: the
Ulva species; the research aim; the respective concentrations of Phe and
Trp. To further detail the use of EAA in fish farming, the articles were
classified according to the fish species and family, fish developmental
phase, Phe and Trp concentrations, and the respective aims of each
study. The names assigned to the alga taxa were checked in the Al-
gaeBase (Guiry and Guiry, 2019); the fish names were confirmed using
FishBase (Froese and Pauly, 2019).

2. Effects of stress on fish production

Stress in fish farming can be related to physical (e.g., handling,
transport, confinement, or capture), chemical (e.g., pollutant exposure,
acidification, low oxygen, temperature), or biotic stressors (e.g., star-
tling, the presence of predators) that can affect physiological responses
such as growth, reproduction, immune system functioning can trigger
fish mortality (Barton, 2002; Wolkers et al., 2012, 2014). In accordance
with the magnitude and duration of the stressor, the fish can be im-
pacted at molecular to biochemical levels (Barton, 2002). Additionally,
the degree and the type of behavioral and physiological responses to
stress can vary among fish species (El-Khaldi, 2010).

According to Barton (2002), three physiological responses are
usually attributed to environmental stressors that require physiological
adjustments in terms of metabolism, respiration, etc. The primary re-
sponses include initial neuroendocrine alterations, the release of ca-
techolamine from chromaffin tissue, and the stimulation of the hy-
pothalamic-pituitary-interrenal axis – resulting in the release of
corticosteroid hormones. Secondary responses are responsible for var-
iations in plasma and tissue ion and metabolite levels, hematological
features, and heat-shock or stress proteins. Tertiary responses are re-
lated to animal performances (e.g., changes in growth rates, disease
resistance, behavioral patterns, and survival).

Since fish management triggers fish mortality and production loss,
the search for new sources of anxiolytics from ecofriendly sources is of
great importance.

3. Phenylalanine and tryptophan as anxiolytics in fish farming

Phe can be converted to tyrosine, which is a precursor of dopamine
and the neuro-transmitters responsible for stress responses in fish (Li
et al., 2009; Saavedra et al., 2009). Trp is a precursor of serotonin (5-
Hydroxytryptamine, 5-HT), a neurotransmitter responsible for the
regulation of behavioral processes and growth and protein synthesis
(Hseu et al., 2003; Höglund et al., 2005; Pewitt et al., 2017).

Of the 25 articles that reported the use of Phe and Trp as anxiolytics
in fish farming, 24 cited the use of Trp; only one cited Phe (Table 1).
Preference should be given to Trp, as it is a serotonin precursor that can
minimize fish stress caused by factors such as handling and cannibalism
(Wolkers et al., 2012, 2014). Trp is also a precursor of niacin (Vitamin
B3), which stimulates insulin production – an important growth hor-
mone (Table 1) – resulting in improvements in the zoo-technical
parameters of the fish.

Supplementing Trp in the diet of Rhamdia quelen (Quoy and
Gaimard, 1824) increased its growth and improved feeding efficiency.
When Trp concentrations were lowered, feeding efficiency decreased
(Pianesso et al., 2015) – showing that it is important to animal growth
(related to the production of insulin). Similarly, the inclusion of Trp in
the diets of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) and Cy-
prinus carpio (Linnaeus, 1758) resulted in greater growth uniformity
(Tang et al., 2013; Zaminhan et al., 2017) – a very important con-
sideration in commercial animal production.

The EAA Trp occurs in low concentrations in nature, making

investigations focusing on it (and other sources of EAA) necessary and
commercially important (Li et al., 2009; Le Floc'h et al., 2011).When
absent in fish diets, or administered at only low concentrations, their
growth diminishes – demonstrating the existence of species-specific
requirements (Pianesso et al., 2015; Pewitt et al., 2017). Supplements
of Trp in the diet of Oncorhynchus mykiss (Walbaum, 1792), for ex-
ample, did not decrease their aggressive behavior or their growth
(Winberg et al., 2001; Lepage et al., 2002), but it did diminish canni-
balism in Sander lucioperca (Linnaeus 1758) (Król and Zakęś, 2016). An
inadequate dose of Trp was probably used in the former case, which
resulted in an imbalance of amino acid ratios, again demonstrating the
dose-specific effect of that compound.

Phe is an EAA also used as an anxiolytic in fish farming, being
critical to metabolic regulation, growth, and stress responses in the
form of the neuro-transmitter dopamine (Li et al., 2009; Saavedra et al.,
2010; Zehra and Khan, 2014). Solea senegalensis (Kaup, 1858) fed with
supplemental Phe showed significant stress reductions – a response
attributed to the greater induced synthesis of dopamine (Costa et al.,
2012). As such, the literature reviews verified that the use of Phe and
Trp in fish farming can be very important to fish health.

4. Phenylalanine and tryptophan in Ulva spp.

Thirty-two scientific articles with information concerning Phe and
Trp in Ulva spp. were encountered. Twenty-two had used similar ana-
lytical methods for detecting EAA in Ulva spp. The quantification of
EAA in Ulva spp. in most of the studies was related to their nutraceutical
properties and, to a lesser extent, bio-refining. None of the articles
discussed the anxiolytic potentials of the EAA, Phe, or Trp found in Ulva
spp. (Table 2). U. lactuca (39%), U. fasciata (10%), and U. rigida (10%)
were the most-cited macroalgae.

Phe concentrations in Ulva species ranged from 0.001–36.7 g per
100 g of protein; Trp concentrations ranged from 0.6–0.7 g per 100 g of
protein. The range of Phe values reflect different extraction protocols,
analytical instrumentation, as well as spatial and temporal variations of
the alga sampled, among other factors (Kumar et al., 2017). Of the 32
articles analyzed, only one quantified Trp; Phe was quantified in all of
them (Table 2). That result is related to the use of acid hydrolysis for
extracting EAA – which makes it impossible to detect Trp (Lourenço
et al., 2002; Yaich et al., 2011; Angell et al., 2016, 2017); the article
that quantified Trp used an alkaline hydrolysis extraction process
(Bikker et al., 2016). In the 31 articles that did not detect Trp, the
probable intentions of the authors were to determine total amino acid
contents – leading us to advise that searches for anxiolytic substances in
Ulva should employ alkaline hydrolysis.

5. Ulva spp. as candidates for IMTA

Among the different seaweeds, species of the green macroalgae Ulva
are candidates for use in aquaculture (Silva et al., 2015; Shpigel et al.,
2017) as sources of amino acids, proteins, minerals, fibers, and other
constituents (Valente et al., 2006; Ergün et al., 2009; El-Tawil, 2010;
Angell et al., 2015; Moustafa and Eladel, 2016). Additionally, Ulva
species have ideal characteristics for aquaculture due to their rapid
growth and wide tolerance of abiotic conditions (Castelar et al., 2014),
including their use as biological filters within the integrated multi-
trophic aquaculture model – IMTA, as they show considerable rates of
nutrient assimilation (Neori, 2008; Cruz-Suárez et al., 2010). That
group of algae also shows promise as a co-feed in IMTA with shrimp
(Pallaoro et al., 2016), as a protein supplement for gilt-head bream fish,
and as a biofilter to reduce nitrogen levels (Shpigel et al., 2017, 2018).
With the increased demand for protein biomasses as feed ingredients,
improvements of Ulva spp. cultivation could provide another source of
amino acids; Saccharina latissima kelp, for example, cultivated in IMTA,
produces abundant amino acids (Marinho et al., 2015).

Ulva spp. can also be used as ingredients in animal feed due to their
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desirable nutritional characteristics, often acting as nutraceuticals
(Shuuluka et al., 2013; Shpigel et al., 2017; Wells et al., 2017). Ad-
ditionally, the use of Ulva spp. cultivated under IMTA conditions as feed
could replace up to 10% of the fishmeal otherwise provided (Abdel-
Warith et al., 2016), diminishing production costs (purchase, transport,
and storage) while increasing profits and better ensuring the sustain-
ability of fish farming.

The demand for alternatives to the use of animal proteins in human
diets has grown considerably due to awareness of cardiovascular dis-
eases and diabetes linked to high levels of saturated fats and cholesterol
(Bleakley and Hayes, 2017). Ulva spp. are rich in proteins and amino
acids such as alanine, arginine, phenylalanine, leucine, proline, threo-
nine, tryptophan, and valine (Li et al., 2009; Shuuluka et al., 2013;
Angell et al., 2015; Mata et al., 2016; Pallaoro et al., 2016), and the
inclusion of Ulva spp. as a food supplement in shrimp and fish farming
has improved animal health (Cruz-Suárez et al., 2009; Shuuluka et al.,
2013; Pallaoro et al., 2016). Since the cultivation of Ulva species has
been found to be viable in integrated aquaculture systems (Castelar
et al., 2014; Shpigel et al., 2018), new uses for their products should be
explored as pharmaceutical drugs, nutraceuticals (Holdt and Kraan,
2011), and other such products.

6. Influence of abiotic factors on phenylalanine and tryptophan
production in Ulva spp.

The presence of the EAA Phe and Trp in Ulva spp. (van der Wal
et al., 2013; Bikker et al., 2016; Mata et al., 2016) presents the op-
portunity for their use as anxiolytics in fish farming. Evaluations of the
influence of abiotic factors such as seawater temperature, pH, salinity,
nitrate and phosphate concentrations, and irradiance on essential
amino acid production by seaweeds for anxiolytic purposes will have
great importance as a biotechnology tool. Benjama and Masniyom
(2011) and Wells et al. (2017) noted that since environmental para-
meters influenced algal biosynthesis, they could obtain specific sub-
stances from culture macroalgae through the manipulation of certain
abiotic factors.

To identify Phe synthesis patterns in Ulva spp., we constructed a
matrix composed of geographic locations (latitude and longitude), en-
vironmental data, the concentrations of the EAA encountered, and the
protein contents in the Ulva spp. cited in the articles. Only articles
specifying the analytical methods used for Phe quantification and
having similar protein contents were considered (to help guarantee
statistical consistency); for that reason, Trp analyses were excluded due
to the small number of appropriate references. The data matrix in-
cluded environmental parameters known to influence algal metabolism
(Hurd et al., 2014) [mean sea surface temperature – MSST, thermal
amplitudes of sea – TAS, salinity, pH, nitrate (N) and phosphate (P)
concentrations, and irradiance (PAR)] obtained from the BioOracle data
set (Tyberghein et al., 2012). Principal component analysis (PCA) and
simple and multiple regressions were performed using that matrix,
considering a significance level of p < .05, using the Statistica pro-
gram, version 7, StatSoft Inc.

A positive correlation was detected between Phe concentrations and
mean sea surface temperatures (MSST), and a negative correlation with pH,
independent of the species evaluated (Fig. 1). Regression analyses were
significant for the isolated parameters (Phe=−18.59+3.29×MSST,
R2=0.33, p=.004, Phe=3990.89–481.12×pH, R2=0.52, p=.0008)

Table 2
Articles with quantification of phenylalanine (Phe) and tryptophan (Trp) in g of
amino acid per 100 g−1 protein, of various Ulva spp. between the years 2000
and 2018 (Author/year) in studies on the chemical composition (CC), nutri-
tional composition (NC) and feed (F).

Taxa/as Enteromorpha in the
article

Phe Trp Study Author/year

U. californica Wille 6.3 – NC Pirian et al., 2016
6.3 – NC Pirian et al., 2016

U. capensis Areschoug 4.0 – F Shuuluka et al., 2013
U. clathrata (Roth) C.

Agardh
3.8 – F Cruz-Suárez et al., 2009
3.7 0.7 CC Peña-Rodríguez et al., 2011
3.7 0.6 CC Peña-Rodríguez et al., 2011
4.2 0.7 CC Peña-Rodríguez et al., 2011
4.4 0.6 CC Peña-Rodríguez et al., 2011

U. compressa Linnaeus 0.8 – NC Paiva et al., 2017
8.9 – NC Pirian et al., 2016
8.8 – NC Pirian et al., 2016

= E. compressa 5.6 – NC Ganesan et al., 2014
= E. compressa – CC Chattopadhyay et al., 2007
U. fasciata Delile 0.5 – CC Lourenço et al., 2002

0.5 – CC Lourenço et al., 2002
5.7 – NC Moustafa and Eladel, 2016
6.2 – NC Moustafa and Eladel, 2016
5.7 – NC Moustafa and Eladel, 2016
6.1 – NC Moustafa and Eladel, 2016
6.2 – NC Moustafa and Eladel, 2016
6.0 – NC Moustafa and Eladel, 2016
5.5 – NC Moustafa and Eladel, 2016
5.9 – NC Moustafa and Eladel, 2016
5.5 – NC Rameshkumar et al., 2013
6.7 – NC Pirian et al., 2016
6.8 – NC Pirian et al., 2016

U. flexuosa Wulfen 9.2 – NC Pirian et al., 2016
9.1 – NC Pirian et al., 2016

= E. tubulosa 5.8 – NC Ganesan et al., 2014
U. intestinalis Linnaeus > 0.0 – NC Benjama and Masniyom,

2011
0.3 – NC Ramos et al., 2000

= E. intestinalis 4.9 - CC Biancarosa et al., 2017
7.4 - NC Maehre et al., 2014

U. lactuca Linnaeus 5.4 0.7 NC Bikker et al., 2016
1.3 – F Ortiz et al., 2006
0.8 – F Pallaoro et al., 2016
4.0 – F Shuuluka et al., 2013
>0.1 – NC van der Wal et al., 2013
5.7 – CC Wong and Cheung, 2001
2.5 – F Yaich et al., 2015
3.7 – NC Yildirim et al., 2009
0.6 – NC Kumar and Kaladharan,

2007
4.9 – NC Nielsen et al., 2012
4.2 – NC Rodríguez-González et al.,

2014
6.0 – NC Maehre et al., 2014
9.5 – NC Pirian et al., 2016
9.6 – NC Pirian et al., 2016
4.3 – CC Astorga-España et al., 2016
5.6 – CC Biancarosa et al., 2017

U. linza Linnaeus 9.2 – NC Pirian et al., 2016
9.3 – NC Pirian et al., 2016

= E. linza 5.7 – NC Ganesan et al., 2014
= E. linza 3.6 NC Yildirim et al., 2009
U. ohnoi M. Hiraoka and S.

Shimada
6.0 – CC Angell et al., 2015
6.2 – CC Angell et al., 2015
8.5 – CC Mata et al., 2016

U. pertusa Kjellman <0.1 – NC Benjama and Masniyom,
2011

U. prolifera O. F. Müller 7.9 – NC Pirian et al., 2016
7.8 – NC Pirian et al., 2016

U. reticulata Forsskal 5.3 – NC Ratana-arporn and
Chirapart, 2006

0.3 – CC Al-Saif et al., 2014
U. rigida C. Agardh 3.3 – F Shuuluka et al., 2013

4.8 – CC Taboada et al., 2010
17.8 – NC Paiva et al., 2017
1.2 – CC Gao et al., 2017
1.1 – CC Gao et al., 2017

Table 2 (continued)

Taxa/as Enteromorpha in the
article

Phe Trp Study Author/year

U. tepida Masakiyo and
Shimada

9.6 – NC Carl et al., 2016
11.1 – NC Carl et al., 2016
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but were more robust when multiple regression was used
(Phe=10,046.35–6.50×MSST – 1202.93×pH, R2=0.65, p=.017).
Limitations of the analyses related to a reduced number of cases, the
standardization of the analytic methods among the articles, and the absence
of detailed descriptions of the environmental characteristics of the sample's
origin, did not allow the construction of models that could predict pheny-
lalanine concentrations in Ulva species. We recommend that MSST and pH
factors be prioritized in future studies that seek to increase EAA production
in Ulva species.

Although Ulva species show wide tolerance ranges to some abiotic
factors (e.g., salinity, temperature, luminosity, and nutrient con-
centrations) in relation of their growth, those factors can greatly in-
fluence the production of bioactive compounds (Benjama and
Masniyom, 2011; Angell et al., 2015; Mata et al., 2016). At salinity
levels of 45–60 PSU, for example, U. ohnoi had a low growth rate but
produced large quantities of total amino acids (although salinity did not
influence Phe concentrations) (Angell et al., 2015). The small numbers
of reports for some species (Angell et al., 2015; Moustafa and Eladel,
2016), however, may have masked their differential responses to
abiotic factors.

Interesting examples are found in the literature of the manipulation
of temperature, light, and pH conditions to obtain desirable natural
products from Ulva in aquaculture. The use of Recirculation
Aquaculture Systems (RAS) made it possible to estimate the quantities
of desired biochemical compounds produced by U. ohnoi during six
months of cultivation, with a total protein yield of 18.4 t.ha−1.year−1

and a 41% EAA content (Mata et al., 2016).
In addition to the possibility of obtaining accurate production esti-

mates using RAS, the inclusion of Ulva in animal feed could benefit fish
health through the inclusion of nutraceutical compounds, such as vi-
tamin E and several EAA (Table 2). As half of all fish farm production
costs are related to nutrition, the inclusion of Ulva in their feed (even if
only partially) would reduce the amount of fishmeal needed, diminish
pollution caused by that food source, and minimize environmental
damage resulting from overfishing (Trushenski et al., 2010; Bleakley
and Hayes, 2017; Quezada-Rodríguez and Fajer-Ávila, 2017).

Algae can be added to the feeds of both omnivorous and carnivorous
fish without compromising zoo-technical parameters such as fish length
and biomass, feed conversion efficiency, and blood parameters
(Madibana et al., 2017). Algae can also replace traditional feeds in
shrimp farming. U. lactuca successfully replaced commercial feed
without compromising shrimp growth or its EAA composition in the
culture of Litopeneaus vannamei (Boone) (Pallaoro et al., 2016).

7. Questions that need to be addressed in the future

Although Trp and Phe are found in Ulva and are useful as anxioly-
tics, there are no actual published citations of Ulva spp. being used as an
anxiolytic source in any fish farm. Phe and Trp are obtained from other
sources for that purpose. Will the inclusion of Ulva in fish feed provide
anxiolytic effects?

As Phe and Trp are crucial to fish health as anxiolytics, and en-
vironmental factors influence their production by Ulva, the growth
conditions of that algae could be manipulated to obtain higher EAA
productions. Modeling using Phe data from Ulva spp. grown under
different environmental conditions indicated that the principal factors
governing high yields were mean sea surface temperatures and pH. The
identification of the Phe synthesis patterns in Ulva spp. showed the
importance of those abiotic factors to increasing EAA production in
Ulva species; there was not sufficient data available to determine the
factors influencing Trp production. What then are the factors that in-
fluence high Trp production? Data from the literature has shown that
the responses of cultivated fish to supplementary Phe and Trp will vary
according to the fish species and the amino acid concentrations used.
Can a standard concentration be established for each fish species?

The lack of reports on Trp produced by Ulva spp. is related to the
extraction method used, since Trp can only be detected in Ulva spp.
when alkaline hydrolysis is employed. Due to the importance of that
EAA to fish farming, its existence in Ulva, and the possibility of culti-
vating that algae (while manipulating environmental factors to increase
EAA production), the question of which environmental factors can in-
crease Trp production will be very important.

As it was possible to identify environmental factors cited in the
literature that promoted the increase of Phe concentrations in Ulva spp.,
accurately detecting tryptophan in Ulva spp. will potentiate the use of
that alga in different industrial sectors, such as pharmaceuticals, food
production, etc. What then are the alternative methods of alkaline hy-
drolysis for detecting tryptophan in Ulva spp.?

We verified the potential use of Ulva spp. as anxiolytic sources for
fish farming, although many issues remain to be addressed to perfect
their use for that purpose.
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Corrigendum

Corrigendum to “Ulva spp. as a natural source of phenylalanine and
tryptophan to be used as anxiolytics in fish farming” [Aquaculture 509
(2019) 171–177]

Ana Carolina Calheirosa, Renata Perpetuo Reisa,⁎, Beatriz Castelarb, Diana Negrão Cavalcantic,
Valeria Laneuville Teixeirad
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b Fundação Instituto de Pesca do Estado do Rio de Janeiro, Avenida das Américas 31501, CEP 23032-050 Rio de Janeiro, RJ, Brazil
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CEP 24001-970 Niterói, RJ, Brazil
dUniversidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, Avenida Pasteur 458, CEP 22290-255 Rio de Janeiro, RJ, Brazil

The authors regret the corrections on the Table 1: In the first line of
the first column change Bricon amazonicus (Spix & Agassiz, 1829)
Matrinchã instead Cirrhinus mrigala (Hamilton, 1822) Mrigal carp. In
the second column of the first line: change Bryconidae instead
Cyprinidae.

Table 2: In the table caption change 2017 instead 2018.
Page 172, second paragraph, sixth line, in the item - 4.

Phenylalanine and tryptophan in Ulva spp.: Please change “only two
quantified Trp;” instead “only one quantified Trp;”.

The authors would like to apologise for any inconvenience caused.
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