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Raw material of gelidioid red algae yielding high-quality agar has been in short supply due to overharvesting, but 

in situ farming of gelidioids has not been practical due to their slow growth. To produce vegetative seedstock of a cos-

mopolitan species, Pterocladiella capillacea, we investigated the number and length of regenerated branches arising 

from sectioned fragments during 3 weeks of laboratory culture at 10, 15, 20, and 25°C. All sectioned fragments formed 

axis-like branches mostly from the upper cut edge and stolon-like branches mostly from the lower cut edge, showing 

a high capacity of regeneration and intrinsic bipolarity. At 20°C, the number of regenerated branches increased to 2.74 

± 1.29 on the upper cut edge and 4.26 ± 2.66 on the lower cut edge. Our study reveals that the use of fragments bearing 

regenerated branches as seedstock can be a simple method to initiate fast propagation for mass cultivation in the sea or 

outdoor tank.
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INTRODUCTION

Gelidioid red algae are well-known raw materials 

yielding high-quality bacteriological and pharmaceu-

tical-grade agar and agarose and having valorizing bio-

activity (Rhein-Knudsen et al. 2015, Matos et al. 2020). 

Biocellulose nanocomposites can be developed from the 

microfibrillar material in the rhizines of Gelidium elegans 

(Chen et al. 2016). However, the recent shortage of gelidi-

oid biomass due to overharvesting in nature is a major 

challenge to the future of the high-quality agar and aga-

rose industries (Santos and Melo 2018). Bacterial agarose 

medium from gelidioids cannot be substituted by carra-

geenan or other products from red algae (Callaway 2015). 

There has been recognition of the need for sustainable 

supplies and investigations of biomass (Akatsuka 1986, 

Felicini and Perrone 1994, Friedlander 2008, Santos and 

Melo 2018), but the mass cultivation methods for gelidi-

oids are still not developed.

Pterocladiella capillacea (S. G. Gmelin) Santelices & 

Hommersand, long referred to as Pterocladia capilla-

cea (S. G. Gmelin) Bornet, is distributed globally from 

the Galápagos Islands on the equator to England in the 

northern hemisphere and New Zealand in the southern 

hemisphere (Freshwater et al. 1995, Boo et al. 2016). The 

plants grow by division of a dome-shaped apical cell, and 

they reach up to 30 cm in nature (Felicini and Perrone 

1994). Although P. capillacea has a Polysiphonia-type life 

Received June 23, 2021, Accepted November 20, 2021

*Corresponding Author

E-mail: cgchoi@pknu.ac.kr
Tel: +82-51-629-6546,   Fax: +82-51-629-6538

This is an Open Access article distributed under the 
terms of the Creative Commons Attribution Non-Com-

mercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 
permits unrestricted non-commercial use, distribution, and reproduction 
in any medium, provided the original work is properly cited.

http://crossmark.crossref.org/dialog/?doi=10.4490/algae.2021.36.11.20&domain=pdf&date_stamp=2021-12-15


Algae 2021, 36(4): 327-332

https://doi.org/10.4490/algae.2021.36.11.20 328

MATERIALS AND METHODS

Samples for growth experiments were collected from 

March 12‒14, 2021, from the intertidal rocky shore at 

Dongbaek-ri, Gijang on the southeastern coast of Korea. 

Collections were transported to the laboratory within 20 

min and kept in a tank of 10 L set with running seawater. 

The plants were cleaned, removing epibionts and sur-

face sediments by a brush and knife under a compound 

microscope. They were rinsed repeatedly under running 

seawater for 2 days.

Healthy plants were selected by viewing under a com-

pound microscope, and then clean and young branches 

were cut to 0.8 cm long using a medical disposable bi-

opsy punch (Kai Industries Co., Ltd., Saitama, Japan). 

Growth experiments were carried in a programmable 

multi-room incubator (JSR, JSMI-04CP; JS Research Inc., 

Gongju, Korea) with light intensity set at about 27 µmol 

photons m-2 s-1 and a photoperiod of 10 dark : 14 light. 

Four temperature conditions were used; 10, 15, 20, and 

25°C, which are approximately similar to seasonal sea-

water temperatures on Korean coasts (http://iridl.ldeo.

columbia.edu/maproom/Global/Ocean-Temp/Month-

ly_Temp.html). Cultures were kept in a six-well TC-treat-

ed multi-well cell culture plate (353046; Falcon, Miami, 

FL, USA) (Fig. 1). Each well had a single fragment, and a 

total of 42 sectioned fragments were kept in seven repli-

cates at each of the four temperature options. Provasoli’s 

enriched seawater medium was used (Starr and Zeikus 

1993) and the medium was renewed every week. The 

culture experiments lasted for 3 weeks, and then all cul-

tured fragments were photographed using a Tech Xcam 

III camera (Techsan Co., Ltd., Seoul, Korea) attached to a 

compound microscope (SZX10; Olympus, Tokyo, Japan). 

The length of the longest branch from both cut edges of 

cultured fragments was measured under the microscope. 

In addition, the number of branches from both cut sides 

was counted under the microscope.

Data from 40 fragments were used for statistical analy-

sis except a couple of fragments with abnormal growth. 

However, 29 fragments were available at 10°C because of 

no growth of other fragments. All data were presented as 

mean ± standard error. We assessed the significance of 

the differences in the length of the longest regenerated 

branches and the number of regenerated branches on 

both sides of sectioned fragments among the different 

temperatures using ANOVAs. The analyses were based on 

a one-way design among four levels of temperatures as 

fixed factor. The means were compared using the F-test 

to determine which of the cultures differed significantly. 

history, asexual tetrasporophytes predominate sexual 

carposporophytes in the field (Bottalico et al. 2008, Pa-

tarra et al. 2020). For example, in Baja California, Mexico, 

gametophytes occurred solely in January with a very low 

percentage (less than 0.15%) (Servièrse-Zaragoza and 

Scrosati 2000) and they have been reported to be rare 

in temperate waters (Felicini and Perrone 1994). Erect 

plants are mostly annual, while prostrate stolons are pe-

rennial, existing for 2‒3 years (Felicini and Perrone 1994, 

Stewart 1968).

P. capillacea may be a suitable species for vegetative 

propagation due to its high capacity for regeneration 

from wounded branches (Felicini and Perrone 1994). 

Many researchers have studied the growth of P. capillacea 

under various conditions of temperature and irradiance 

in laboratories, providing valuable data about increasing 

biomass (Nasr et al. 1966, Friedlander and Zelikovitch 

1984, Stewart 1984, Fralick et al. 1990, Macler and Zupan 

1991, Yokoya and Oliveira 1992, Felicini et al. 2002, Gal-

Or and Israel 2004, Harb et al. 2018, Patarra et al. 2019). 

However, their studies have focused mostly on laboratory 

cultivation. The aquaculture of P. capillacea in the sea or 

outdoor tanks has not made progress due to the poor sur-

vival and growth of tetraspore germlings as well as slow 

growth (Stewart 1984, Friedlander 2008, Santos and Melo 

2018). The aim of the present work was to produce veg-

etative seedstock for mass cultivation of P. capillacea. We 

examined the number and length of regenerated branch-

es arising from both cut edges of sectioned fragments in 

laboratory culture. This study is the first endeavor to cul-

tivate P. capillacea in Korea, one of the major countries 

harvesting the species for agar extraction.

Fig. 1. A six-well culture plate containing a single fragment in each 
of the wells at 15°C.



Choi et al.   Fragment Seedstock for Aquaculture of Pterocladiella capillacea

329 http://e-algae.org

branches were mostly compressed and often had blunt 

tips (Fig. 2A‒L). The length of axis-like branches averaged 

0.84 ± 0.05 mm at 10°C cultivation and 1.47 ± 0.09 mm at 

15°C. They became branched and long at 20°C (Fig. 2E & 

F) and the length increased substantially to 2.93 ± 1.28 

mm. Their size averaged 3.77 ± 0.35 mm at 25°C. Stolon-

like branches were mostly terete and often had acute tips 

(Fig. 2F). The length of solon-like branches averaged 0.92 

± 0.11 mm at 10°C and 1.63 ± 0.13 mm at 15°C. The length 

increased substantially to 2.93 ± 0.20 mm at 20°C and 

4.15 ± 0.31 mm at 25°C (Fig. 3).

The number of axis-like branches averaged 2.13 ± 0.24 

When an ANOVA identified a significant difference (p < 

0.05), Tukey’s post hoc multiple comparisons were used 

to identify where the differences occurred. All data anal-

yses were performed using a jamovi 1.8.2 (http://www.

jamovi.org).

RESULTS

In all temperature conditions, sectioned fragments 

formed axis-like branches from the upper cut edge and 

stolon-like branches from the lower cut edge. Axis-like 

Fig. 2. Various forms of regenerated branches from the upper and lower cut edges of sectioned fragments: fragments cultured at 10 (A–C), 15 (D–
F), 20 (G–I), and 25°C (J–L). Scale bar represents: 2 mm.
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produces more stolon-like branches which helps in pro-

ducing abundant rhizoids for anchoring to the substrata. 

The results reveal the high regeneration capacity and 

intrinsic bipolarity of P. capillacea, which is supported 

by the significant statistical differences in regeneration 

except the number of regenerated branches from the up-

per cut edge. The polarity from the sectioned fragments 

has been reported in previous studies on P. capillacea 

(Felicini and Perrone 1994, Felicini et al. 2002). Although 

the growth of fragments has been reported in many pre-

vious studies (Stewart 1984, Felicini and Perrone 1994, 

Gal-Or and Israel 2004), our study is the first on P. cap-

illacea examining the number and length of regenerat-

ing branches from both the upper and lower cut edges 

of sectioned fragments. Axis-like regenerated branches 

may produce more biomass, while stolon-like branches 

may have more opportunity to produce holdfasts for 

anchoring to the substrate. Such fragments likely have a 

high chance of survival in the sea compared to spores or 

fragments lacking regenerated branches. A steady supply 

of fragments with regenerating branches may enable the 

bottleneck for cultivation of P. capillacea in the sea to be 

overcome.

at 10°C and 2.58 ± 0.21 at 15°C. It increased to 2.74 ± 0.20 

at 20°C but decreased to 2.56 ± 0.21 at 25°C (Fig. 4). The 

number of stolon-like branches averaged 1.42 ± 0.18 at 

10°C. It increased substantially to 4.18 ± 0.44 at 15°C and 

4.26 ± 0.44 at 20°C. However, it decreased to 2.64 ± 0.22 at 

25°C (Fig. 4).

ANOVAs showed significant differences among cul-

tures of sectioned fragments at all temperatures except 

the number of regenerated branches from the upper cut 

edge (Table 1). Temperature responses to all growth re-

sponses, represented as the length and number of regen-

erated branches, were significant (p < 0.001). However, 

the number of regenerated branches from the upper edge 

was not significant. In addition, growth responses to all 

temperature options were also significant (p < 0.001).

DISCUSSION

Our study reveals that the upper cut edge of sectioned 

fragments extends the regeneration area, favoring more 

axis-like branches rather than a single branch from a sin-

gle apical cell of the Gelidiales. The lower cut edge also 

Fig. 3. The Length of longest regenerated branch from the up-
per and lower cut edges of sectioned fragment at four temperature 
conditions. Bars were represented as means ± standard error (n = 40 
fragments except 27 at 10°C).

Fig. 4. The number of regenerated branches from the upper and 
lower cut edges of sectioned fragment at four temperature condi-
tions. Bars were represented as means ± standard error (n = 40 frag-
ments except 27 at 10°C).

Table 1. ANOVA of the length of the longest renewed branch and the number of renewed branches from both cut edges of sectioned frag-
ments at four different temperatures 

Variable Sum of squares df Mean square F p-value

Length of longest renewed branches from the upper cut edge 158 3 52.69 33.3 <0.001
Length of longest renewed branches from the lower cut edge 161 3 53.70 26.4 <0.001
No. of renewed branches from the upper cut edge           5.55 3   1.85   1.2    0.313
No. of renewed branches from the lower cut edge 116 3 38.60 8.36 <0.001
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egy to produce vegetative seedstock for mass cultivation. 

Fragments bearing regenerated branches can be trans-

ferred to outdoor tanks. Further research is needed to 

evaluate their transfer to rocky shore habitats, as well as 

their survival rate both in tanks and in situ compared to 

that of spores released in nature.

In addition to need for sustainable biomass for agar 

industries, there is considerable interest globally in the 

issue of coastal restoration and ocean afforestration, 

including the roles of subcanopy taxa (Tait and Schiel 

2018). The development of appropriate seedstock and 

nursey techniques are essential for progress to meet 

these targets. We are continuing research on the use of 

sectioned fragments with regenerated branches for cul-

tivation in ourdoor tanks or in the sea. Further method-

ological improvements, using sectioned fragments as 

seedstock, have potential to support agar industries in 

the near future, and may be able to be applied to other 

Gelidiales species that are low in regeneration capacity 

but high in agar quality.
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