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INTRODUCTION

Seagrass meadows provide foundational habitat by
supporting high biodiversity (Hughes & Stachowicz
2004, Waycott et al. 2006) and numerous ecosystem
services, ranging from erosion protection and carbon

sequestration to nursery functions and recreation
(Costanza et al. 1997, Heck et al. 2003, Joseph et al.
2006). Unfortunately, seagrasses are suffering a glo -
bal decline due to a variety of changes related either
indirectly (through climate change) or directly (as a
consequence of habitat destruction, reduced water
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ABSTRACT: Populations along the northern boundary of a marine species’ distributional range in
the NE Atlantic are expected to harbor lower standing genetic variation as a consequence of post-
glacial expansion following the last glacial maximum. Founder events and marginal habitat avail-
ability may render the edge populations more vulnerable to anthropogenic stress and less cap -
able of rapid adaptation to global climate change, a concern for conservation and management.
We analyzed meadow architecture, persistence and connectivity within and among 15 locations
(600 samples genotyped with 8 microsatellite loci) in 3 fjords in Troms County, Norway (69° N).
Whereas global mean allelic diversity (standardized for sample size) was in accordance with pre-
vious studies using the same markers, more extensive sampling revealed a broader range of allelic
richness (mean = 2.85; range = 1.84 to 4.21) in the regional pool. Genotypic diversity was typically
high, whereas large genets were rare (2 out of 15 locations). Population differentiation (FST) was 2
to 6 times higher between fjords than within fjords. A Bayesian (STRUCTURE) analysis also strongly
supported the genetic distinctness of each fjord. Although 9 locations within the 60 km long Bals-
fjord were connected by gene flow, demographic connectivity may actually be low, as fixed differ-
ences were observed at 6 of the 9 locations, along with significantly positive inbreeding coeffi-
cients and strong substructure. Overall, our results suggest that these northern, leading-edge
meadows are healthy, but vigilance is required to avoid further losses. Fjord-level management,
especially of the larger fjords, will be sufficient to capture the range of variation.
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quality, physical disturbance from commercial fishing,
aquaculture and invasive species) to anthropogenic
activities (Orth et al. 2006, Waycott et al. 2009).

Eelgrass Zostera marina L. is the most widely dis-
tributed seagrass in temperate, northern hemisphere
regions of both the Pacific and Atlantic Oceans. It is
the dominant seagrass along European shores, rang-
ing from northern Norway to southern Portugal.
Along the Norwegian coast, eelgrass has been con-
sidered relatively common in the south, but progres-
sively scattered and less abundant in the northern-
most areas, as a consequence of habitat limitation
(Lid & Lid 1994). However, a mapping project initi-
ated in 2007 under the National Program for Map-
ping and Monitoring of Marine Biodiversity (Bekkby
et al. 2008, 2011) has revealed a more extensive
 distribution in the higher latitudes than expected, re -
cording >3000 beds ranging in size from 100 m2 to
6 km2. Consequently, the Norwegian Directorate for
Nature Management (www.natur base.no) and Akva-
plan-NIVA (www. akva plan. niva. no) have initiated
an action plan to establish legislation through the
Nature Diversity Act of 19 June 2009 that will ensure
sustainability of and promote basic research on sea-
grass habitat.

Although Zostera marina has been recorded in
northern Norway since the 1880s (Norman 1900),
very little research has been conducted on the
 biology or ecology of eelgrass itself or its role in com-
munity dynamics. Duarte et al. (2002) found no limi-
tation on growth rate associated with nutrients, irra-
diance or day length, while working in Hopavagen
Lagoon (63° 35’ N, 9° 32’ E), suggesting that long term
persistence was not physiologically limited. The only
other studies we are aware of were performed in
southern Norway and focused on epiphytes, epi-
fauna, infauna and grazing effects on eelgrass
(Fredriksen & Christie 2003, Fredriksen et al. 2004,
2005, 2010). It should also be noted that, although our
study area lies well above the Arctic Circle (68° to
70° N), it is considered sub-Arctic from a biogeo-
graphic perspective, based on the influence of the
Gulf Stream and the 10°C July isotherm, which skirts
just north of the country (Stonehouse 1989, www.
amap. no). This suggests that suitable habitat and
temperatures supportive of larger and possibly
higher diversity populations than predicted have
been present for many thousands of years.

Recolonization of Zostera marina throughout the
NE Atlantic commenced at the end of the last glacial
maximum (LGM) (18 000 yr BP) (Bradwell et al. 2008)
from more southerly refugia in parts of Ireland, the
Brittany peninsula of western France and northern

Spain (Olsen et al. 2004, Becheler et al. 2010).
Northerly refugia in Iceland and the Lofotan penin-
sula of Norway have also been proposed (see Maggs
et al. 2008, Coyer et al. 2011). As the glaciers re -
treated, northerly expansion ensued via ‘leading-
edge’ populations (Ibrahim et al. 1996), derived from
the refugial pool(s). Leading-edge populations are
expected to exhibit lower allelic diversity (reviewed
in Hewitt 2004) as a consequence of founder effects
and small population sizes that are strongly affected
by genetic drift. Many benthic marine species pres-
ent this phylogeographic gradient of ‘southern rich-
ness and northern purity’ (Hewitt 2004, Maggs et al.
2008).

Knowledge of population genetic structure in sea-
grasses provides inferences about meadow architec-
ture and ecological processes related to meadow
dynamics, as well as growth and persistence through
sexual reproduction and vegetative spread of genets
to produce large clones (Waycott et al. 2006, Procac-
cini et al. 2007). Meadows may be heterogeneous as
a consequence of temporal admixture events of
repeated recruitment through time (originally pro-
posed by Petit et al. 2003 for oaks, Becheler et al.
2010); limited dispersal of pollen and seeds, leading
to patchiness (Hämmerli & Reusch 2003); and local
habitat selection (Oetjen & Reusch 2007, Oetjen et al.
2010, Winters et al. 2011). Alternatively, they can be
homogeneous as a consequence of dominance by a
few large genets/clones (Reusch et al. 1999, Coyer et
al. 2008) and limited recruitment (Duarte et al. 2006).

Isolation of meadows further affects the mainte-
nance of diversity, especially if populations are small
and dispersal is limited (Waycott et al. 2006, Procac-
cini et al. 2007). The complexity of the Norwegian
coastal fjord system creates vast amounts of dissected
and patchy habitat, which conceivably could enhance
or reduce diversity and gene flow within the regional
pool, depending on local currents and physical barri-
ers. Since, from a conservation perspective, the over-
all effect of reduced genetic variation is a reduction
in adaptive potential, it is necessary to determine
whether fjord populations in the high latitudes may
be exceptionally vulnerable.

In the present study we focus on northern fjord
populations (68° to 70° N) in Troms County, Norway.
Our aims were to (1) test, via more extensive sam-
pling, the degree to which northern fjord populations
conform to the predicted low allelic diversity profile
associated with the leading-edge hypothesis, (2)
assess the relative contributions of sexual reproduc-
tion and the vegetative spread of large genets/clones
to meadow architecture as an indicator of long-term
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persistence, (3) test the level of population differenti-
ation and isolation as an indicator of connectivity
within and between fjords and (4) identify whether
ecotypes (e.g. Zostera marina var. angustifolia) are
specific to subtidal or intertidal habitats.

MATERIALS AND METHODS

Sample collection and DNA extraction

Samples (n = 50 per location) of Zostera marina
were collected from 15 locations in 3 fjords: Balsfjord
(n = 9), Sør-Lenangen (2) and Sagfjord in Salangen (4)
(Fig. 1, Table 1). Samples were collected both by wad-
ing and diving (tidal difference in the area ~3 m), at 1
to 1.5-m intervals in which direction was determined
by a random walk. The only exceptions to this sam-
pling strategy were the Laksvatn samples in Balsfjord.
These were collected along 3 transects (high, medium,
low intertidal), which ran parallel to the shore. Leaves
from individual shoots (ramets) were cut into two or

three 2 cm pieces, blotted dry and placed into tubes
with silica crystals for dehydration and preservation.
Leaf tissue was pulverized in the laboratory, using an
MM 301 mixer mill (Retsch). DNA was extracted using
a silica-based method as described by Hoarau et al.
(2007) and Coyer et al. (2009), except that the cetyl
trimethylammonium bromide (CTAB)/sample slurry
was heated at 60°C for 1 h.

Microsatellite amplification and genotyping

Template DNA for polymerase chain reactions was
obtained from 1 µl of the final DNA solution (typically
2 to 10 ng). Eight species-specific microsatellite loci
were multiplexed (CT2, CT23, CT35, CT12, CT16,
CT17D, CT19, CT20) for PCR amplification (Reusch
2000, Reusch et al. 2000). A recent study of Zostera
marina revealed that 2 loci commonly used (CT17H
and CT35) sometimes revealed signs of genetic
mosaicism (somatic mutation producing >2 alleles
per ramet) among populations at the northern and

southern limit of its European distribu-
tion (Reusch & Boström 2011). The
complexity of the microsatellite geno-
types suggested that there were one or
more divergent cell lineages present
within a single ramet. In the present
study, complex genotypes were found
for CT17H and this locus was elimi-
nated, whereas CT35 displayed bial-
lelic patterns for the 14 alleles and was
retained. Genotypes were visualized
on an ABI 3730 gene analyser
(Applied Biosystems) and analysed
using GENOTYPER (Applied Biosystems)
software.

Data analysis

A genetic individual (genet) consists
of many shoots (ramets), which can
extend for several meters. Large
genets are referred to as clones (see
Procaccini et al. 2007 for discussion of
terminology). Thus, sampled shoots in
an area can have the same multilocus
genotype (MLG) if part of the same
large clone. The number of genets and
ramets sampled in a given area were
distinguished with GENCLONE 2.0
(Arnaud-Haond & Belkhir 2007). Prob-
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Fig. 1. Location of sampling sites for Zostera marina including the results of the
STRUCTURE analysis (Pritchard et al. 2000). Each individual is represented by a
horizontal bar partitioned into colored segments, the length of which is pro-
portional to the individual’s membership in each of 4 clusters (K = 4). 

See ‘Materials and methods: Data analysis’ for determination of K
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abilities of identity by chance (Psex (FIS)) were calcu-
lated for each sample to avoid false assignment of
individual ramets, sharing the same MLG by chance,
to the same genet (clone). Psex (FIS) accounts for
departure from Hardy-Weinberg equilibrium (HWE)
and provides the most conservative estimates of
clonal identity (Arnaud-Haond & Belkhir 2007).

Genotypic diversity, R (number of genets, G−1,
over number of sampled ramets, N−1); and allelic
richness, Ac (number of alleles per locus), corrected
for the minimum number of genets identified among
all locations (here n = 17), were also calculated with
GENCLONE 2.0. Expected heterozygosity (He) and
Wright’s fixation indices (FIS and FST) were calculated
using GENETIX 4.05 (Belkhir et al. 2001). All subse-
quent analyses of population structure used unique
genets only, i.e. duplicate MLGs were removed.

Linkage disequilibrium (LD) was assessed in ARLE-
QUIN 3.5 (Excoffier et al. 2005). Pairwise comparisons
of all loci (n = 8) per population (n = 15) were com-
pared using a likelihood ratio test (Slatkin & Excoffier
1996) and tested for significance (p = 0.05) with
10 000 permutations.

Clone size was estimated based on the spatial res-
olution of the linear sampling method (i.e. 1 to 1.5 m),
which provided a coarse minimum value only; shoots
were not sampled in a grid or mapped. For example,
if 3 consecutive samples had the same MLG, the
clone was estimated as minimally 3 to 4.5 m in size.

Population structure was first analyzed in a classic
FST-based format, using genetic distances based on
the Cavalli-Sforza and Edwards chord distance and
neighbor-joining, using the software package PHYLIP

3.5 (Felsenstein 1994). We used GENDIST for comput-
ing genetic distances, NEIGHBOR for constructing the
tree, CONSENCE for constructing the consensus tree
and SEQBOOT for the bootstrap resampling.

Isolation by distance (IBD) (Wright 1943, Slatkin
1993) was evaluated by correlating estimates of FST /
1 − FST (Rousset 1997), using the θ estimator (Weir &
Cockerham 1984), with geographic distances. This
was done using matrix correlation methods based on
the Mantel test (Manly 1994) and 10 000 randomiza-
tions with IBD Web Service v.3.23 (Jensen et al.
2005). Linear distances were determined with way-
points taken in the field and ArcGIS. Geographic dis-
tances (km) were log-transformed in accordance
with a 2-dimensional stepping stone model, which
we deemed more appropriate, given the dissected
nature of the fjord system.

Population structure was also analyzed in a
Bayesian framework implemented in the software
STRUCTURE 2.3.3 (Pritchard et al. 2000). In this
approach there is no a priori designation of ‘popula-
tions’. The admixture model was used to estimate the
log probability P(X |K) of encountering each user-
determined set of clusters/populations (K = 2, 3, 4,
etc.), by genetic assignment of individuals to the most
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Fjord region                     Location                                                                            Date of                Coordinates         Collection                          
Name of location           description                                                                      sampling                    (N, E)               depth (m)                            

Sagfjord
Elvelund-øst                  River outlet, sand, subtidal                                          17/06/2011      68° 51.93’, 17° 49.85’         0.4                                
Elvelund-vest                River outlet, sand, subtidal                                          17/06/2011      68° 52.20’, 17° 50.28’         0.4                                
Medby WP8                   Tidal flat, mud, subtidal                                               18/06/2011      68° 54.58’, 17° 43.95’         0.5                                
Medby WP9                   Tidal flat, mud, subtidal                                               18/06/2011      68° 54.60’, 17° 43.98’         0.5                                

Sør-Lenangen
Sør-Lenangen Nord      Tidal flat, river outlet 2 km away, mud, intertidal      21/06/2011      69° 47.42’, 19° 59.39’         0.3                                
Sør-Lenangen Sør         Tidal flat, river outlet  2 km away, mud, intertidal     21/06/2011      69° 47.35’, 19° 58.39’         0.3                                

Balsfjord
Kobbevågen                  Tidal flat (RAMSAR site), mud                                    16/08/2011      69° 29.54’, 18° 53.47’          2                                  
Ramfjord                        Tidal flat, soft, mixed sand/mud                                  16/08/2011      69° 33.56’, 19° 08.44’         1.5                                
Kvitberget                      Tidal flat, soft, mixed sand/mud                                  17/08/2011      69° 13.92’, 19° 17.42’         0.3                                
Sørkjosen-littoral           Tidal flat (RAMSAR site), mud                                    17/08/2011      69° 13.83’, 19° 17.47’         0.3                                
Sørkjosen-deep 1          Tidal flat (RAMSAR site), mud                                    17/08/2011      69° 13.86’, 19° 17.32’         2.5                                

                                                                                                                                                                                                                                         
Sørkjosen-deep 2          Tidal flat (RAMSAR site), mud                                    17/08/2011      69° 13.76’, 19° 16.13’        4−5                                
Skjæret                           Shallow, soft, mixed sand/mud                                    17/08/2011      69° 15.96’, 19° 16.32’          3                                  
Storslett                          Tidal flat, very muddy                                                  18/08/2011      69° 22.36’, 19° 10.34’         0.3                                
Laksvatn                        Tidal flat, soft, mixed sand/mud                                  18/08/2011      69° 22.18’, 19° 19.38’        0−1                                

                                                                                                                                                                                                                                         

Table 1. Zostera marina. Collection sites and general information. Sampling dates are given as dd/mm/yyyy
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likely clusters (see Fig. S1 in the Supplement at
www. int-res. com / articles / suppl / m486 p121 _ supp . pdf).
The true number of clusters was estimated under 2
assumption sets using the web-based STRUCTURE

HARVESTER (Earl & vonHoldt 2012). In the first analy-
sis, posterior probabilities for a given K, P(X |K)
(Pritchard et al. 2000), were determined directly,
whereas in the second analysis the ad hoc statistic ΔK
(Evanno et al. 2005) was used. The latter is recom-
mended when asymmetrical dispersal patterns exist
among given locations. The ΔK method is based on
the rate of change of P(X |K) values between different
Ks, with the number of sampling locations used as
priors and assigned to the most likely K. Each analy-
sis was repeated 5 times (106 iterations; burn-in =
100 000) to avoid dependence on starting values.

RESULTS

Mean allelic richness (Â), a measure of genetic
variation that was adjusted for a sample size of 17,
was 2.85 with a range of 1.82 to 4.21 (Table 2). Rich-
ness values varied between locations within all 3
fjords and were uncorrelated with substrate (sand or
muddy) or depth (shore or subtidal position). Highest
allelic richness was recorded at Elvelund-øst (Â =
4.00) in the Sagfjord and the 2 Sørkjosen-deep sites
(Â = 4.05 and 4.21) situated inside a Ramsar wetland

site at the head of Balsfjord. The lowest values were
found at Medby WP9 (Â = 1.82), Kvitberget (Â = 1.84)
and Skjæret (Â = 1.98) in Balsfjord. Nine of the
15 locations sampled had putative private alleles
(mean = 3.60; range = 1 to 8) and 10 locations showed
at least 1 fixed allele (Sør-Lenangen had 5.) (Table 2).

Genotypic diversity (R), a measure of clonality via
vegetative spread of genets, was also highly vari-
able, ranging from 0.319 at Sør-Lenangen Nord,
where 3 large clones dominated, to 1.0 at Sørkjosen-
deep 1 and 2, and Ramfjord, where every shoot
sampled belonged to a unique genotype (Table 2).
Genotypic diversity was high (R = 0.872 to 0.935) at
Sagfjord, while at Sør-Lenangen, 1 meadow con-
sisted of 3 large clones extending to 21 m in size.
Most genets, however, ranged minimally from 2 to
5 m in size, depending on the resolution of the sam-
pling. Genotypic/clonal diversity was mostly high at
Balsfjord, with a mix of moderately sized clones and
many smaller ones at most locations. The highest
allelic and genotypic diversities (Â = 4.21; R = 1.00)
were observed sub tidally at the Sørkjosen Ramsar
site, which hosts a large intertidal−subtidal meadow
system of >400 000 m2, whereas the contiguous
intertidal site was less allelically diverse with
slightly more clones (Â = 2.58; R = 0.957). The
largest clones were at Sør-Lenangen Nord, which is
near a river outlet. No genets were shared among
the locations sampled.
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                             Water           Sample      Additional observations
                          temp. (°C)       numbers

                               5−7               0−49         Patchy distribution. Plant length max. 20−25 cm.
                               5−7              50−99        Patchy distribution. Plant length max. 20−25 cm.
                               5−7            100−149      Large, dense meadow. Plant length max. 20−25 cm.
                               5−7            150−199      Large, dense meadow. Plant length max. 20−25 cm.

                               5−7            200−249      Small patches. Plant length max. 15 cm.
                               5−7            250−299      Small patches. Plant length max. 15 cm.

                                11             300−349      Small, dense, subtidal meadow. Plant length max. 25−40 cm. Diving.
                                11             350−399      Small subtidal meadow. Patchy plant distribution. Plant length max. 25 cm. Diving.
                                 9              400−449      Sparse but continuous intertidal meadow. Small Z. marina var. angustifolia type morphology.
                                 9              450−499      Moderately dense, intertidal meadow. Small Z. marina var. angustifolia type morphology.
                                 9              500−549      Large, dense, subtidal meadow. Plant length max. 89 cm. 
                                                                      Flowers and seed capsules observed. Diving.
                                 9              550−599      Large, subtidal meadow, ~700 m from littoral. Flowers and seed capsules observed. Diving.
                                 9              600−649      Subtidal meadow. Large but sparse patches of plants. Diving.
                                 9              650−699      Large, intertidal meadow. Sparse patches of brown and unhealthy looking plants.
                                 9              700−747      Dense meadow. Sampling from 3 zones; shallow –0 m (700–715), intermediate –0.5 m (717–732),
                                                                      deep –1 m (734–749). Healthy looking plants.

Table 1. (continued)
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Mean He varied significantly, ranging from 0.162 at
Skjæret to 0.430 at Sørkjosen-deep 1, sites separated
by only 4 km (Table 2). Significant departures from
HWE (6 locations) and linkage disequilibrium (LD) (7
locations) were observed (Table 2). Significantly pos-
itive values of FIS may be due to inbreeding and kin-
ship (null alleles have seldom been encountered with
these loci) or a possible Wahlund effect, although the
latter explanation is not favored, given the sampling
scale and strongly correlated LD (Table 2). Pairs of
loci contributing to the LD within each population
were not the same loci contributing to LD among

populations, and the number of loci involved was 1 or
2. In contrast, the 2 Elvelund locations showed strong
LD with 18 out of 28 comparisons significant at
Elvelund-øst and 10 out of 28 significant at Elvelund-
vest. Significant LD, involving 2 pairs of loci (GA2
and GA12, and GA23 and GA17D), were matched
between the 2 locations; all other comparisons in -
volved different pairs of loci.
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Location                           N         G         R            Â       pp      fixed       G >1             nR                   He           FIS             LD
                                                                                                                                                                                                      

Elvelund-øst                    29         27       0.93       4.00       8           0             2                 2                  0.443    0.157*       0.64
Elvelund-vest                  40         35       0.87       3.04       4           0             3          1.8 (2,3,4)           0.342      0.069         0.36
Medby WP8                     48         42       0.87       2.12       0           3             2             4 (2,6)             0.214      –0.171        0.00
Medby WP9                     47         44       0.93       1.82       2           3             1                 4                  0.248      –0.041        0.07
Sør-Lenangen Nord        48         16       0.31           –           0           5             3       11.7 (3,15,17)       0.183      0.101         0.00
Sør-Lenangen Sør           48         42       0.87       2.62       4           5             2             3 (2,4)             0.183      –0.025        0.00
Kobbevågen                    35         34       0.97       2.75       4           2             1                 2                  0.273    0.167*       0.43
Ramfjord                          29         29       1.00       3.50       0           1             0                  –                  0.265    0.241*       0.28
Kvitberget                       47         46       0.97       1.84       4           3             1                 2                  0.202    0.315*       0.07
Sørkjosen-littoral             48         46       0.95       2.58       0           0             2           2.5 (2,3)             0.264    0.221*       0.14
Sørkjosen-deep 1            41         41       1.00       4.21       3           0             0                  –                  0.430    0.215*       0.21
Sørkjosen-deep 2            41         41       1.00       4.05       2           0             0                  –                  0.387      0.100         0.00
Skjæret                             48         46       0.95       1.98       3           4             2                 2                  0.162      0.067         0.00
Storslett                           48         40       0.83       2.26       0           2             2             4 (2,6)             0.183      –0.007        0.03
Laksvatn                          47         42       0.89       2.98       0           1             3          2.7 (2,3,4)           0.219      0.050         0.00

Table 2. Zostera marina. Genetic diversity and clonality, based on 8 microsatellite loci. N = number of shoots analyzed, G =
number of genets, R = genotypic diversity (G−1/N−1), Â = allelic richness (standardized to 17 genets), pp = putatively private
alleles found only at that location, fixed = number of fixed alleles (frequency > 0.97), G>1 = number of genets with >1 ramet,
nR = mean number of ramets per genet (distribution of duplicate ramets per genet given in brackets), He = expected hetero -
 zygosity, FIS = Wright’s fixation index estimated as f (Weir & Cockerham 1984, *p < 0.05), LD = linkage disequilibrium, i.e. 

proportion of pairwise comparisons that were significantly linked

Fig. 2. Zostera marina. Relationships among populations in
the study area of Troms County. The tree was based on pair-
wise Cavalli-Sforza and Edwards’ chord distances (Cavalli-
Sforza & Edwards 1967) between genets only. Bootstrap 

values were derived from 1000 resamplings

Fig. 3. Zostera marina. Isolation by distance (IBD). The ge-
netic and geographic distance matrix (Table S1 in the Sup-
plement) for Z. marina was compared with the Mantel Test
and 10 000 randomizations; the estimate of R2 was calculated
using reduced major axis (RMA) regression (Jensen et al.
2005) among all pairwise comparisons. Within-fjord dis-
tances ranged from 0.6 to 50 km; between-fjord distances 

ranged from 77 to 208 km
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Population differentiation (FST) was 2 to 6 times
higher among fjords than within fjords (see Table S1
in the Supplement). The trend was further supported
by 3 well-supported clusters in the neighbor-joining
tree (Fig. 2). There was no true IBD among fjords, as
the regression line in Fig. 3 reflects differences in
spatial scaling of the sampling. Likewise, the Baye -
sian STRUCTURE analysis (Fig. 1) strongly separated
each of the fjords with K = 3 or K = 4. Populations
were also substructured within fjords, as almost all
pairwise FST comparisons were significant (p < 0.05)
following Bonferroni correction and all but 4 were
significant without Bonferroni correction (Table S1 in
the Supplement).

There was no IBD within fjords (Fig. 3). Pairwise FST

values ranged from 0.0921 to 0.1611 within Sag fjord.
The significant values found for the Elvelund-øst−
Elvelund-vest, and Medby WP8− Medby WP9 pairs re-
flect geographic distances of <1 km, and within Sør-
Lenangen, significant differentiation (FST value =
0.0717) was found between 2 locations only, which
were 0.6 km apart. Populations within the entire 60 km
length of Balsfjord revealed a mean FST of 0.0536
(range = 0.0079 to 0.1179), with Kobbevågen differing
most. The 2 deep sites at Sørkjosen, within the Bals-
fjord, were comprised of many genotypes and formed
a well-supported group in all analyses (Figs. 2 & 3).

Small plants, morphologically attributable to Zostera
marina var. angustifolia, were collected in the mid−
high intertidal at Kvitberget and Sørkjosen-littoral.
Both of these locations are close to, and/or contigu-
ous with, the Sørkjosen-deep sites (Sørkjosen-littoral
is 120 m from the deep sites and 6 km from Kvitber-
get). Microsatellite loci did not distinguish the ‘angusti -
folia’ morphotype from Z. marina (Fig. 3).

DISCUSSION

Scientists and conservation managers alike need to
understand the determinants of seagrass health,
specifically what affects persistence, sustainability,
and extent (area and density). Although they only
form one component of conservation and manage-
ment, population genetic analyses provide evolution-
ary insights about both historical and contemporary
processes that have shaped, and are likely to shape,
future sustainability. These include a snapshot of rel-
ative recruitment, turnover and genetic potential, av-
eraged over several generations, thus providing
baseline information about potential vulnerability,
past resistance and stability (Procaccini et al. 2007).
Genetic characterization of population structure also

provides partial (although incomplete) information
about connectivity (Gaggiotti 2010) and ecological
coherence that are relevant to marine spatial
planning and protected area design (Nilsson-Jacobi
& Jonsson 2011, 2012). And finally, genetic surveys
provide a practical guide for seagrass mitigation and
restoration (Reynolds et al. 2012) by identifying allelic
and clonal diversity. In short, the ‘evol−eco’ approach
(Pennisi 2012) is gaining importance in both primary
research and conservation management, because it is
recognized that both occur in contemporary time
(Spielman et al. 2004, Allendorf & Luikart 2007).

Past informs present

Signatures of past climate change (such as relatively
lower genetic diversity) remain visible in some north-
ern populations of Zostera marina, as predicted by
phylogeographic theory (Hewitt 2000). For example,
mean values of allelic diversity in our study (mean Â =
2.85, range = 1.84 to 4.21, normalized to n = 17, 15
 locations, 200 km range) compared favorably with
values from Iceland (64° N, mean Â = 1.59, range =
1.51 to 1.64, normalized to n = 22, 2 locations, 50 km
range) (Olsen et al. 2004) and southwestern Green-
land (64° N, mean Â = 2.20, range = 1.38 to 3.00, nor-
malized to n = 10, 4 locations, 50 km range)
(Diekmann & Serrão 2012). The finding of a few loca-
tions with values of Â > 4 (Table 2) are more typical of
southerly locations such as western Sweden, the
 Skagerrak and the western Atlantic coast of America
(Olsen et al. 2004, Diekmann & Serrão 2012). Three
non-mutually exclusive explanations may explain the
diversity patterns. First, the higher diversity may have
resulted in part from biased sampling in that global
surveys generally assess diversity on a per population
basis over the entire distributional range (Olsen et al.
2004), with most sampling occurring in the middle of
the range (Diekmann & Serrão 2012). Second, the
highly dissected coastline of the Norwegian fjord sys-
tem and large meadow sizes in some fjords, combined
with strong population differentiation and evidence
for sexual recruitment, rather than vegetative expan-
sion (particularly in large, dense meadows such as
Sørkjosen; see next subsection), may foster higher
levels of diversity, as also observed in Brittany
(Becheler et al. 2010). Finally, the higher diversity
may be related to a cryptic refugium on the coastal is-
land of Andøya (near Lofotan, Troms County), which
has been suggested for both terrestrial and marine
species (reviewed in Maggs et al. 2008, Coyer et al.
2011). We conclude that, while overall mean allelic di-
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versity is consistent with the leading edge hypothesis,
pockets of higher diversity may ensure stability, as
well as expansion further north (e.g. Jan Mayen, East-
ern Spitzbergen) and east along the Siberian coast.

Clonal diversity and population structure

Understanding the genetic structure of populations
provides insights into meadow dynamics, growth and
persistence through sexual reproduction and vegeta-
tive spread. In our study, within-meadow allelic di ver -
sities varied widely and were roughly proportional to
meadow size, whereas genet/clonal diversity was
more uniform (Table 2). Our initial prediction for the
Norwegian populations was low genotypic diversity
(i.e. presence of a few large genets/clones), a charac-
teristic of isolation and reduced sexual reproduction
(Duarte et al. 2006) typically present in marginal popu-
lations such as those in the northern Baltic (Reusch et
al. 1999), the Black Sea (Olsen et al. 2004) and the
southern-most distribution in Portugal (Billing ham et
al. 2003). To the contrary, only 1 of the 15 sampled lo-
cations, an intertidal river outlet at Sør-Lenangen
Nord with 5 fixed differences, was dominated by large
genets/clones. R values below 0.50 were mostly inter-
tidal (4 out of 6) with the exception of the two Medby
sites (Sagfjord) and Skjæret (Balsfjord). However, the
remaining 9 locations in both Sagfjord and Balsfjord
displayed R values > 0.60 with Sørkjosen-deep (Bals-
fjord) displaying maximal genet/ clonal diversity (every
shoot a different genet) and no fixed differences. In
general, the larger, denser meadows had higher allelic
diversity and were subtidal, whereas genet/clonal di-
versity was independent of meadow size or depth. The
independence of genet/ clonal diversity was unex-
pected, as subtidal populations were assumed to be
protected from annual ice scour; nevertheless, the
large Sør-Lenangen Nord genets/clones were in 0 to
30 cm of water. Although we have no direct measures
of growth rate, the presence of small to medium sized
genets/clones (2 to 4 m) and an expansion rate of 10
cm yr−1 in the Baltic (Reusch et al. 1994, 1999),
suggests an age of 20 to 40 yr in the fjords and thus, a
slow turnover rate. The large genets/clones at Sør-
Lenangen Nord could therefore be considerably older. 

Flowering was widespread from June to August,
indicating the potential for new recruitment, which is
less common in marginal habitats (Procaccini et al.
2007). However, the presence of fixed allelic differ-
ences at 10 of the 15 locations, and significant
inbreeding coefficients at 6 locations (Table 2) sug-
gest that individual meadows within a fjord were

more isolated than indicated by gene flow (see next
subsection). Although selfing occurs in Zostera
marina, outcrossing remains the main reproductive
strategy (Reusch 2001). Mating among relatives is
common in relatively closed (dense) meadows (e.g.
Z. noltii; Zipperle et al. 2009) and biparental inbreed-
ing may or may not reduce fitness in Z. marina (Häm-
merli & Reusch 2003). In principle, a Wahlund effect
could account for the positive FIS values at some loca-
tions, although this seems less likely given the spatial
scale of the sampling. Instead, the correlation be -
tween positive FIS and strong LD (Table 2) at 6 loca-
tions is more consistent with non-random mating.
With the exception of 3 comparisons between the 2
Elvelund populations, the loci contributing to the LD
within each population were not the same loci con-
tributing to LD among populations, which is consis-
tent with population rather than physical linkage
effects. This is also in agreement with the lack of sig-
nificant results observed in Olsen et al. (2004) and
the many other studies utilizing these loci.

Considering both allelic and genotypic diversity
together, we conclude that present conditions for
Zostera marina in the northern fjords are stable and
that these meadows are not on the edge of local
extinction as might be predicted based on distribu-
tional−edge assumptions. Strong inbreeding coeffi-
cients and LD suggest that selfing and mating with
relatives may be unavoidable at some locations.

Isolation or connectivity

Significant population differentiation existed be -
tween fjords, typically 2 to 6 times higher than differ-
entiation found within fjords (Table S1 in the Supple-
ment, Figs. 1 & 2). Consequently, fjords are strongly
isolated from one another, whereas meadows within
fjords may or may not be isolated. For example, the 2
Medby, 2 Elvelund, 2 Sør-Lenangen and 2 Sørkjosen
locations are <1 km apart and distinct, whereas Laks-
vatn, Skjæret and Storslett are 6 to 20 km apart and
well-connected by gene flow. This uncertainty stems
from the fact that the genetic results (gene flow) con-
flict with demographic inferences drawn from the
genotypic diversity part of the analysis and both form
part of population structure (Lowe & Allendorf 2010).
Simulation studies of dispersal distances of Zostera
marina suggest that 50% of the floating rhiphidia
stay within 500 m, with a highly skewed tail of long
distance dispersal over a few km (Källström 2006).
Using assignment tests, Reusch (2002) found rafting
of seed-bearing shoots 30 to 54 km away from the
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source and IBD estimates of 100 to 150 km have been
documented along the Wadden Sea coast (Olsen et
al. 2004, Ferber et al. 2008).

However, despite the critical role of dispersal
(Kendrick et al. 2012), meadows within fjords (e.g.
Balsfjord) are likely to be more demographically iso-
lated than gene flow or IBD (Fig. 3) suggest. For
example, Kobbevågen (Balsfjord) is highly isolated,
situated in an inlet in which local current flow proba-
bly induces entrainment. Isolation also is likely at the
innermost portion of a fjord such as the Sørkjosen
sites (Balsfjord) and Elvelund (Sagfjord). Other mead-
ows in Balsfjord, however, are connected by current
flows and not differentiated. Laksvatn, Skjæret and
Storslett are less dense meadows, situated along the
fjord edges. Whereas these may be subject to more
successful recruitment, dense meadows may effec-
tively be isolated islands (see discussion below), even
though gene flow is high. Because we currently
know little about actual recruitment and turnover
rates of eelgrass in these fjords, it remains unclear
how demographically connected particular meadows
are. However, the presence of significant genetic
substructure and inbreeding suggests considerable
meadow isolation. Clarification of actual connectivity
remains fundamental to establishing ecological
coherence models, an area that is in active develop-
ment and for which genetic data are highly desirable.

Substructure within meadows — stochastic 
processes or habitat selection

Genetic substructure was present within all 3 fjords.
At Sørkjosen (Balsfjord), intertidal and subtidal plants
(700 m apart and morphologically indistinguishable)
were strongly differentiated in all analyses, as were
the plants from the Medby sites in Sagfjord (Figs. 1
& 2) and the 2 Sør-Lenangen sites. Sporadic recruit-
ment and limited dispersal are 2 factors contributing
to substructure. Both are affected by shoot density of
the meadow, which itself can become a recruitment
barrier (Duarte et al. 2006, Neiva et al. 2012). Mosaic
patterns of Zostera marina genotypes, attributed to
sporadic recruitment and limited dispersal, have been
documented in Brittany (Becheler et al. 2010) and
Schleswig-Holstein (Hämmerli & Reusch 2003). Both
Medby and Sørkjosen are dense meadows, suggesting
that recruitment may be limited. Creation of a large
area of distinct substructure requires the opening of
large gaps that favor new recruitment, such as de-
structive (as opposed to normal) waterfowl grazing
(Zipperle et al. 2010) or past habitat destruction by an-

chors or fishing traps. Although destructive waterfowl
grazing could be an explanation applied to the inter-
tidal Medby sites, it is unlikely at the subtidal (2.5 to
5 m deep at low tide) Sørkjosen-deep site which is
too deep. Alternatively, substructure may result from
ecotypic differentiation, as fjords and specific habitats
within fjords can promote local selection. Although
the presence of distinct subgroups within the Sørk -
josen and Medby sites suggests that ecotypic differ-
entiation is possible, demonstration of local habitat se-
lection (Stockwell et al. 2003) requires experimental
support, which putatively neutral microsatellite loci
cannot provide. However, genome scans of common
garden and reciprocal transplant experiments have
revealed selection between intertidal and subtidal,
and depth-associated genotypes of Z. marina (Oetjen
& Reusch 2007, Oetjen et al. 2010, Winters et al. 2011),
illustrating that ecotypic differentiation is common.

The narrow-leaved Zostera marina var. angustifolia
and the wide-leaved Z. marina at Kvitberget and
Sørkjosen-littoral could not be distinguished by the
microsatellite analysis, a conclusion  that further sup-
ports the results of Becheler et al. (2010) in Brittany
and was also reached using chloroplast and nuclear
DNA se quences of the 2 morphotypes in Denmark and
Orkney (J. A. Coyer unpubl. data). Clearly, ecotypes
with respect to leaf width do exist and may be an indi-
cation of local selection that cannot be detected with
the microsatellite loci used in our study. Furthermore,
leaf width is a stable phenotypic characteristic and
cannot be attributed to morphological plasticity. Since
one of the goals of conservation is to preserve the in-
tegrity of gene pools, including infraspecific categories
that may have no official taxonomic or legal status
(Groom et al. 2006, Allendorf & Luikart 2007), it is im-
portant to protect areas sufficiently large to capture as
much of the full range of diversity (genetic and/or
morphological) as possible. Thus, cryptic infraspecific
taxa that are morphologically indistinguishable from
one another, as well as infraspecific taxa that are mor-
phologically distinguishable (e.g. Z. marina var. an-
gustifolia) can be protected within a management
area, without assignment of any special legal status.

Eelgrass and the larger eco−evo 
conservation context

The widely held notion that populations in the high
latitudes and/or at the extreme northern edge of a
species’ distribution are genetically depauperate and
‘struggling’ is unsubstantiated, as our study showed
that meadows of Zostera marina along northern Nor-
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wegian fjords have a higher than expected level of re-
gional allelic diversity, are genotypically/ clonally di-
verse, display some evidence of local ecotypes and
were generally healthy in appearance. The impor-
tance of high genotypic diversity for community func-
tion is well-documented for Z. marina and can lead to
enhanced growth rates and competitive ability (Häm-
merli & Reusch 2003); greater biodiversity of the asso-
ciated biota (Reusch et al. 2005); greater biomass pro-
duction following grazing by geese (Hughes &
Stachowicz 2004); greater shoot density (reflective of
habitat quality) and biomass of epiphytic algae (as a
measure of food resource availability) (Hughes & Sta-
chowicz 2009a,b); enhanced ‘high disturbance’ re-
sponse, leading to better resilience (Hughes & Sta-
chowicz 2011); and increased restoration success
(Reynolds et al. 2012). In addition, all of the aforemen-
tioned outcomes of higher genotypic diversity trans-
late to enhanced ecosystem services (Kenworthy et al.
2006, Reynolds et al. 2012), of which habitat nursery
function is one of the most important (Heck et al.
2003). High abundances of juvenile cod are associated
with eelgrass meadows along the southern coast of
Norway (Fjøsne & Gjøsæter 1996) and eelgrass in the
Balsfjord meadows provide spawning ground for her-
ring and capelin, as well as grazing areas for numer-
ous waterfowl (Strann et al. 2011, www.naturbase.no).
Thus, loss of eelgrass is of general concern.

While the Norwegian mapping project is discover-
ing many meadows in places not previously investi-
gated, temporal comparisons in areas that were
mapped 100 years ago (and/or after the wasting dis-
ease of the 1930s) indicate as much as a 36% reduc-
tion in the areal extent of meadows (N. M. Jørgensen
& T. Bekkby unpubl. data). Some of the losses are di-
rectly attributable to landfill operations, whereas oth-
ers are thought to be the result of agricultural runoff
from farms along the fjords. Threats to eelgrass sus-
tainability can be ameliorated through greater public
awareness. This is especially important because more
extensive fjord usage and consequent pressure on
eelgrass ecosystem services can be expected in the
coming decades. It is also increasingly evident that
individual meadows must be protected as much as is
reasonably possible, as our study suggests that demo-
graphic isolation may be present even in the presence
of gene flow. This was also found in other studies of
Zostera marina meadows in close proximity to one
another (Muñiz-Salazar et al. 2006, Baja California
peninsula; Coyer et al. 2008, California Channel Is-
lands; Wyllie-Echeverria et al. 2010, San Juan Archi-
pelago; Ort et al. 2012, San Francisco Bay). Thus,
large and dense meadows such as those at Sørkjosen

and Medby, as well as smaller and sparser inter- and
subtidal meadows, are of equal importance, because
destroyed meadows may not reestablish.

In conclusion, our ultimate ability to effectively
evaluate and manage seagrass ecosystems will
depend upon a better understanding of how genetic
diversity and population structure affect ecological
function and landscape coherence in real time.
Genetic surveys add an important evolutionary
dimension towards the conservation of genetic-level
diversity, an explicit goal of the International Con-
vention on Biological Diversity (Laikre et al. 2010).
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