🖂 E-Mail

Related article

ACCESS

elSSN : 2093-0860 plSSN : 1226-2617

A	ABOUT	BROWSE ARTICLES	CURRENT ISSUE	FOR AUTHORS AND REVIEWERS		Advanced Search >>
				Instructions for Authors		
ALGAE > Volume 28(2); 2013 > Article ALGAE 2013;28(2): 131-147. doi: http://dx.doi.org/10.4490/algae.2013. Astaxanthin in microalgae: pathways, func				Research and Publication	Next article Archive	TOOLS
				Ethics	PDF Links	
				C Checklist	logical	
implications				E-Submission		
Danxiang Han ¹ , Yantao Li ² and Qiang Hu ^{1,*}				Copyright Transfer Form		Download Citation
Ļ				19.0	1	📆 CrossRef TDM

¹Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus, Mesa, AZ 85212, USA

²The Institute of Marine and Environmental Technology (IMET), The University of Maryland, Baltimore, MD 21202, USA

*Corresponding Author Email: huqiang@asu.edu

18 Cited By

ABSTRACT

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H. pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the microalgal astaxanthin industry.

Key words: astaxanthin biosynthesis; Chlorella zofingiensis; genetic engineering; Haematococcus pluvialis; mass culture; photooxidative stress

Editorial Office

B1F, Trust Tower, 60, Mabang-ro, Seocho-gu, Seoul, 06775, Korea TEL: +82-2-589-0770 FAX: +82-2-589-0771 E-mail: editalgae@gmail.com

Copyright © The Korean Society of Phycology. All rights reserved. Deve

Developed in M2community

About | Browse Articles | Current Issue | For Authors and Reviewers