

ECN Seaweed Biorefinery R&D

Herman den Uil

Trondheim September 2012

www.ecn.nl

Mission:

ECN develops market driven technology and knowhow to enable a transition to sustainable energy

ECN

Locations Dutch ECN Petten Islands Groningen 0 Frysland (head office) Drenthe Noord Flevoland Holle Overijssel **ECN** Amsterdam Wieringerwerf Gelderland O Utrecht 0 Zuid Zuid Holland r ctic Oc Ar ctic Oce 👹 ECN Amsterdam Russia Canad Noord-Brabant United States of America **ECN** Eindhoven North Pacific Ocean Limburg Brazi French Polynesia (Fr..) Australia **ECN** Brussels South Atlantic Ocear les Grozel (France) George y UK, cla ECN Beijing Antarctica

3

R&D fields

Solar Energy

Biomass

Energy Efficiency & CCS

Energy Engineering

Environment

Biomass R&D

- Pre-treatment for heat and power
 - Torrefaction and Torwash
- Combustion
 - Fuel characterisation and consultancy
- Gasification
 - Gasification and gas-cleanup development
- Biorefinery
 - Fractionation of lignocellulose and seaweed
 - Use of fractions lignin and sugar(polymers)

Seaweed R&D background

- Bio-offshore study on seaweed cultivation on the North sea (ECN-C—05-008)
 - Seaweed cultivation area 5.000 km² (<10 % of the NL area of the North Sea @ 57.000 km²)
 - Integration with off-shore wind parks & (other) aquaculture operations
 - Energy potential up to 350 PJth (25 Mton dry biomass per year)

Seaweed R&D background

• Aquatic biomass energy potential

Most feasible technical concepts	Area	Potential
Set 1: Land based open ponds for	Arid land in (sub) tropical zones (deserts)	00.51
microalgae	and close to coast (max 100 km)	90 EJ
Set 3: Horizontal lines for	At existing infrastructure – f.e. offshore	110 51
macroalgae	wind farms (up to 100 km offshore)	110 EJ
Set 5: Vertical lines for macroalgae	Near coast (max 25 km) in nutrient rich water	35 EJ
Set 6: Macroalgae colony	At open sea (biological deserts), up to 2000 km offshore	~6000 EJ
TOTAL		~ 6235 EJ

Source: Ecofys

Seaweed R&D background

ECN Seaweed fractionation R&D

Seaweed species

Saccharina latissima

Laminaria digitata

Laminaria hyperborea

Ulva sp.

Alaria esculenta

Palmaria palmata

Fractionation experimental

Palmaria palmata composition

Xylan (1,3 and 1,4 linkage)

galactose

Palmaria palmata composition

Total Carbohydrate compostion of Palmaria Palmata

Palmaria palmata hydrolysis

- Tests with freeze-dried Palmaria at 2.5 and 25 g d.w. scale.
- Hydrolysis of Palmaria to xylose proven.
- Optimum conditions: 0.1M acetic acid, 100 °C, 2 hr.
- Xylose concentration is dependent on the [H]⁺ concentration not on acid
- \rightarrow Scale up and with fresh seaweeds.

Fresh palmaria palmata tests

- Two tests in 20L autoclave (1 kg dw seaweed).
- >10 kg received, 5 kg wet per test.

Fresh palmaria palmata tests

• Fresh Palmaria tests (July 2012)

- 0.1M acetic acid, 100C, 2h, 9 L/kg d.w. seaweed.
- Red seaweed turned into green 'soup'.
- After centrifugation, ~6L viscous liquid, ~ 4kg solid product.
- pH ND, solids recovery 51.6% d.w.

Fresh palmaria palmata tests

- Sugar yields
 - Yields based on amount of extract.
 - Max. achievable yield based on liquor starting amount.
 - Yield xylose: ~45%.
 - Optimization of separation extracted *Palmaria* / extract might increase yield to max ~65%.
 - Future work: optimisation of process conditions.

Further work and outlook

- Development of fractionation schemes for other seaweeds
- Development of application for seaweed(fractions) with industry and other knowledge institutes
- Conceptual process design and economic evaluation of seaweed fractionation
- Bench-scale experiments on critical process steps in fractionation process

19

Thank you for your attention

For more information please contact: Herman den Uil Energy Research Center of the Netherlands (ECN) P.O. Box 1, 1755 ZG Petten +31-(0)224-564106 denuil@ecn.nl