Value Added Co-product from *Jatropha* Biodiesel Production Process

Rakshit K. Devappa

Content

Jatropha curcas

- Origin: Central American countries
- **Common names:** physic nut, pig nut, purging nut etc.
- Distribution and habitat:
 - Dry regions of tropics
 - Rainfall : 11.8" 39.4"
 - Altitude: 0-500 m
 - Annual temp. (Avg): 65 F
- Botanical features
 - Euphorbiaceae family
 - Small tree or shrub
 - When cut exudes white late:
 - Grows to 9 -16 feet
 - Yield (5-7 mt/h)

Multipurpose uses

Global Market Study on Jatropha 🛛 © GEXSI LLP 2008 👘

Future Jatropha Production

Jatropha curcas Processing

How Good is Jatropha as Fish Feed?

Feedstock	Market share (%)	Energy (MJ/kg DM)	Protein (%)	Fibre (NDF %)	Antinutritional factors	Detoxification treatments
Soybean meal	70	12	50 -53	6	Trypsin inhibitor, phytic acid, lectins, bitter taste, oligosacharides	Heat treatment and solvent extraction
Rapeseed Meal	12	12	39	12-14	Glucosinolates	Controlled feeding studies
Sunflower meal	6	9.5	37	15	Chlorogenic acid	Washing
Cotton meal	6	11.5	40	15	Gossypol	Controlled feeding levels, breeding, solvent extraction
Jatropha kernel meal	0	18	55-64	10	Phorbol esters, curcin, trypsin inhibitor, lectin, saponin, phytate	Chemical and solvent

Chemical Composition of Toxic and Nontoxic Defatted Jatropha curcas Kernels

Parameters	Variety (Jatropha Curcas)		
	Тохіс	Nontoxic	
Crude protein (%)	56-65	63.8	
Lipid (%)	1.5	1.0	
Ash (%)	9.6	9.8	
Gross energy (MJ/kg)	18.2	18	
Neutral Detergent Fibre (%)	9.0	9.1	

Non toxic Jatropha platyphyllla seeds

Toxic Jatropha curcas seeds

Quality of Amino Acid Profile (g/100 g protein)

Amino acids	Cape Verde	Nontoxic Mexican	Protein Isolate	Soybean	Essential amino acid requirement		FAO reference	
	genotype	genotype			Fish	Chick	Pig	_ protein
Lysine	4.28	3.4	3	6.08	4.1-6.1	6.1	4.7	5.80
Leucine	6.94	7.5	7.08	7.72	2.8-5.3	6.7	4.6	6.60
Isoleucine	4.53	4.85	4.47	4.62	2.0-4.0	4.4	4.6	2.80
Methionine	1.91	1.76	1.66	1.22	2.2-6.5 ^a	4.4 [#]	3.0#	2.50
Cystine	2.24	1.58	1.34	1.70	5.0-6.5	-	-	
Phenylalanine	4.34	4.89	5.42	4.84	5.0-6.5 ^b	7.2*	3.6*	6.30
Tyrosine	2.99	3.78	3.2	3.39	-	-	-	
Valine	5.19	5.3	5.18	4.59	2.3-4.0	4.4	3.1	3.50
Histidine	3.3	3.08	3.51	2.50	1.3-2.1	1.7	1.5	1.90
Threonine	3.96	3.59	3.56	3.76	2.0-4.0	3.3	3	3.40

^arequirement varies depending on the amount of cystine in the diet

^b requirement varies depending upon the amount of tyrosine in the diet

[#] in the absence of cystine

*in the absence of tyrosine

Antinutrient/toxic Constituents Present in Toxic and Nontoxic Defatted *Jatropha curcas* Kernel meal*

mponent Variety		
	Тохіс	Nontoxic
Phorbol ester (PEs; mg/g)	3.00	ND to 0.11
Total phenols (% tannic acid equivalent)	0.36	0.22
Tannins (% tannic acid equivalent)	0.04	0.02
Phytates (% dry matter)	9.40	8.90
Saponins (% diosgenin equivalent)	2.60	3.40
Trypsin inhibitor (mg trypsin inhibited per g sample)	21.30	26.50
Lectins (1/mg of meal that produced haemagglutination per ml of assay medium)	102	51

*Expressed on dry matter basis

Toxicity of Jatropha Seeds

- Mice: LD50 27 mg/kg Bd. wt.
- Goat and sheep: 0.05 g/kg/day in diet
- Chicks: 0.1% seed in diet
- **Molluscs: 3 ppm of ethanol extract**
- Fish: 15 ppm PEs in diet
- Pig: 0.8 mg/g PEs in diet
- **Humans: No authenticated studies**

Source: Haas et al., 2002; Source: H.P.S. Makkar and K. Becker, University of Hohenheim, Stuttgart, Germany

- 6 types of phorbol esters.
- Heat stable, Tumour promoters
- After pressing: 70% of PEs in oil + 30% of PEs in seed cake
- Quantification: HPLC method, LCMS

Detoxification of Jatropha Cake/Kernel Meal

- Criteria:
- Favourable: Process should be fast, cost effective, phorbol esters (PEs) should be reduced to undetectable level in HPLC, exhibit no toxicity in bioassays and in animal trials.
- 2. Not favourable: time consuming, PEs reduced below or level similar to nontoxic genotypes of Jatropha containing PEs.
- Current detoxification methods to remove PEs
- **1. Solvent** effective, time consuming
- 2. Chemical effective, bit harsh on the amino acid profile
- **3.** Enzymatic promising but not completely effective
- 4. Microbial time consuming, potentially effective

Effect of Detoxification* on Jatropha Cake/Kernel Meal

Parameter		Untreated Jatropha kernel meal	Treated Jatropha Kernel meal	Soy bean meal	FAO**	
Protein (% DM basis)		64.0	63.0	50-53		
Amino acid (g/16 g	Methionine	1.84	1.55	1.22	2.50	
N)	Cystine	1.51	1.36	1.70		
	Lysine	3.60	3.36	6.10	5.80	
Protein digestibility % (pepsin + pancreatin)		95.2	85.8	91-95		

* WIPO Patent Application WO/2010/092143

**Ref. Protein for growing child

Is Detoxified* Jatropha Kernel Meal Fit for Aqua Feed

MGR: Metabolic growth rate

* WIPO Patent Application WO/2010/092143

Histopathology in Fish (Cyprinus carpio)

NO significant changes observed when fed on detoxified * Jatropha kernel meal when compared to Fish meal based diet.

- ✓ Palatability
- ✓ Nutrient digestibility and digestive enzymes
- ✓Growth
- ✓ Energy metabolism
- ✓ Growth hormone and IGF
 encoding genes
 ✓ Clinical markers enzymes
- ✓ Gut morphology

✓ No toxicity in - liver, kidney, intestine, stomach, heart

✓ No toxicity -serum biochemical characteristics : glucose and cholesterol levels, haemoglobin, haematocrit and triglyceride

Stomach villi (Jatropha kernel meal) <u>Stomach villi</u> (Detoxified Jatropha kernel meal)

Detoxified* Jatropha Meal in Animal Feed

Poultry: (10% and 20% in maize + soybean meal based diet)

 Digestibility of AA from DJKM in young turkeys is very high in comparison with data from other feeds

* WIPO Patent Application WO/2010/092143

Pig: (25 and 50% replacement of soybean iso-nitrogenous diet)

- No histopathological or serum biochemical parameters were altered
 - Detoxified Jatropha meal could replace up to 50% of soybean meal protein with no significant change in growth and feed conversion ratio.

Summary

- Jatropha kernel meal/seed cake is rich in protein
- Kernel meal/seed cake contain phorbol esters as toxic constituent
- Kernel meal/seed cake can be detoxified
- **Detoxified meal** has a **high acceptability** when fed to animals (**fish**, poultry and pig)
- Inclusion of detoxified meal did not affect the growth and health of fish.

Acknowledgements

UNIVERSITÄT HOHENHEIM

College of Tropical Agriculture and Human Resources University of Hawai'i at Mānoa

Prof. Dr. Klaus Becker Prof. Dr. Harinder PS Makkar Dr. Vikas Kumar Mr. Clyde S. Tamaru Mr. Lee Jakeway Ms. Kelly King

Information Sources

- 1. University of Hohenheim website: https://jatropha.uni-hohenheim.de/
- Vikas Kumar, PhD thesis submitted to the University of Hohenheim (2010).
- Makkar HPS and Becker K. Method for detoxifying plant constituents (WIPO Patent Application WO/2010/092143)
- Nitayavardhana, S., and Khanal, S. 2011. Biodiesel-derived crude glycerol bioconversion to animal feed: A sustainable option for a biodiesel refinery. Bioresource Technology, 102, 5808-5814.

